码迷,mamicode.com
首页 > 其他好文 > 详细

HDU - 3306 Another kind of Fibonacci 矩阵快速幂

时间:2015-05-28 09:37:41      阅读:202      评论:0      收藏:0      [点我收藏+]

标签:

题目大意:A(0) = 1 , A(1) = 1 , A(N) = X * A(N - 1) + Y * A(N - 2) (N >= 2).
And we want to Calculate S(N) , S(N) = A(0) 2 +A(1) 2+……+A(n) 2.

解题思路:将An^2化开,得x * x * A(n-1) * A(n-1) + y * y * A(n-2) * A(n-2) + 2 * x * y * A(n-1) * A(n-2),由这个公式就可以得到矩阵了
技术分享

#include<cstdio>
typedef long long ll;
const int N = 4;
const ll mod = 10007;
struct Matrix{
    ll mat[N][N];
}A, B, tmp;
ll n, X, Y;

void init() {
    for(int i = 0; i < N; i++)
        for(int j = 0; j < N; j++) {
            A.mat[i][j] = B.mat[i][j] = 0;
            if(i == j)
                B.mat[i][j] = 1;
        }
    A.mat[0][0] = A.mat[1][2] = 1;
    A.mat[1][0] = A.mat[1][1] = (X * X) % mod;
    A.mat[2][0] = A.mat[2][1] = (Y * Y) % mod;
    A.mat[3][0] = A.mat[3][1] = (2 * X * Y) % mod;
    A.mat[1][3] = X % mod;
    A.mat[3][3] = Y % mod;
}

Matrix matMul(Matrix x, Matrix y) {
    for(int i = 0; i < N; i++)
        for(int j = 0; j < N; j++) {
            tmp.mat[i][j] = 0;
            for(int k = 0; k < N; k++)
                tmp.mat[i][j] += (x.mat[i][k] * y.mat[k][j] ) % mod;
        }
    return tmp;
}

void solve() {
    while(n) {
        if(n & 1)
            B = matMul(B,A);
        A = matMul(A,A);
        n >>= 1;
    }
}

int main() {
    while(scanf("%I64d%I64d%I64d", &n, &X, &Y) != EOF) {
        if(n == 0) {
            printf("1\n");
            continue;
        }
        else if(n == 1) {
            printf("2\n");
            continue;
        }
        init();
        n--;
        solve();
        printf("%I64d\n", (2 * B.mat[0][0] + B.mat[1][0] + B.mat[2][0] + B.mat[3][0] ) % mod);

    }
    return 0;
}

HDU - 3306 Another kind of Fibonacci 矩阵快速幂

标签:

原文地址:http://blog.csdn.net/l123012013048/article/details/46058717

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!