码迷,mamicode.com
首页 > 其他好文 > 详细

hdu3564 Another LIS

时间:2015-05-28 14:11:18      阅读:103      评论:0      收藏:0      [点我收藏+]

标签:线段树   二分   

Problem Description
There is a sequence firstly empty. We begin to add number from 1 to N to the sequence, and every time we just add a single number to the sequence at a specific position. Now, we want to know length of the LIS (Longest Increasing Subsequence) after every time‘s add.
 

Input
An integer T (T <= 10), indicating there are T test cases.
For every test case, an integer N (1 <= N <= 100000) comes first, then there are N numbers, the k-th number Xk means that we add number k at position Xk (0 <= Xk <= k-1).See hint for more details.
 

Output
For the k-th test case, first output "Case #k:" in a separate line, then followed N lines indicating the answer. Output a blank line after every test case.
 

Sample Input
1 3 0 0 2
 

Sample Output
Case #1: 1 1 2
Hint
In the sample, we add three numbers to the sequence, and form three sequences. a. 1 b. 2 1 c. 2 1 3
这题看了别人的题解,最后看懂了。题意是从1~n,一次插入位置,然后每插入一个数求出它的最长递增子序列(不连续)。可以用线段树先求出每个数所在的位置,可以从后往前,因为每次最后一个数的位置一定是固定的。然后就是二分法的lis了,这里如果继续用线段树求lis的话会超时的。
这里二分的lis之前一直看不懂,其实因为输入的数是一次增大的,所以每次只要记录这个数的位置,然后二分找到最接近但大于当前数的位置,然后替换掉找到的数。
这题我对二分又有了新的认识,二分模板不是固定的,而是根据题目意思决定最后返回的值是l还是r.
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define maxn 100005
int a[maxn],ans[maxn],dp[maxn];
struct node{
    int l,r,n;
}b[4*maxn];

void build(int l,int r,int i)
{
    int mid;
    b[i].l=l;b[i].r=r;b[i].n=r-l+1;
    if(l==r)return;
    mid=(l+r)/2;
    build(l,mid,i*2);
    build(mid+1,r,i*2+1);
}

void update(int index,int m,int i)
{
    int mid;
    if(b[i].l==b[i].r){
        b[i].n=0;ans[m]=b[i].l;return;
    }
    if(b[i*2].n>=index) update(index,m,i*2);
    else update(index-b[i*2].n,m,i*2+1);
    b[i].n=b[i*2].n+b[i*2+1].n;
}

int find(int l,int r,int x)
{
    int mid;
    while(l<=r){
        mid=(l+r)/2;
        if(dp[mid]>x){
            r=mid-1;
        }
        else l=mid+1;
    }
    return r+1; //这里也可以是l,可以草稿纸上画一下
}

int main()
{
    int n,m,i,j,h,T,k,len; //len表示最长递增子序列
    scanf("%d",&T);
    for(h=1;h<=T;h++)
    {
        printf("Case #%d:\n",h);
        scanf("%d",&n);
        for(i=1;i<=n;i++){scanf("%d",&a[i]);dp[i]=0;}
        build(1,n,1);
        for(i=n;i>=1;i--){
            update(a[i]+1,i,1);
        }
        len=0;
        for(i=1;i<=n;i++){
            if(len==0){
                dp[++len]=ans[1];  //ans[]表示i所在的位置
                printf("%d\n",len);
                continue;
            }
            k=find(1,len,ans[i]);
            len=max(len,k); //不管这n个数排列顺序怎样,每一次的最长递增子序列一定是递增的,可以画一下。
            dp[k]=ans[i];  //dp[k]表示最长递增序列中的第k个数,用到了单调队列的思想
            printf("%d\n",len);
        }
        printf("\n");
    }
    return 0;
}


hdu3564 Another LIS

标签:线段树   二分   

原文地址:http://blog.csdn.net/kirito_acmer/article/details/46120737

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!