标签:
★★★ 输入文件:napkin.in 输出文件:napkin.out 简单对比
时间限制:1 s 内存限制:128 MB
【问题描述】
一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,…,N)。餐厅可以从三种途径获得餐巾:
(1)购买新的餐巾,每块需p分。
(2)把用过的餐巾送到快洗部,洗一块需m天,费用需f分(f<p)。
如m=l时,第一天送到快洗部的餐巾第二天就可以使用了,送慢洗的情况也如此。
(3)把餐巾送到慢洗部,洗一块需n天(n>m),费用需s分(s<f)。
在每天结束时,餐厅必须决定多少块用过的餐巾送到快洗部,多少块送慢洗部。在每天开始时,餐厅必须决定是否购买新餐巾及多少,使洗好的和新购的餐巾之和满足当天的需求量Ri,并使N天总的费用最小。
【输入】
输入文件共 3 行,第 1 行为总天教;第 2 行为每天所需的餐巾块数;第 3 行为每块餐巾的新购费用 p ,快洗所需天数 m ,快洗所需费用 f ,慢洗所需天数 n ,慢洗所需费用 s 。
【输出】
一行,最小的费用
【样例】
napkin.in
3
3 2 4
10 1 6 2 3
napkin.out
64
【数据规模】
n<=200,Ri<=50
题解:
数据范围小啊,可以网络流。
建边比较复杂:
先建立虚拟源点S和虚拟汇点T,然后把每天拆成ai和bi。
1>从S向ai连流量为r[i],费用为0的边。
再从S向bi连流量无穷,费用为p的点。
2>从bi向T连流量为r[i],费用为0的边。
3>从ai向ai+1连流量无穷,费用为0的边。
再从ai向bi+m连流量无穷,费用为f的边。
再从ai向bi+n连流量无穷,费用为s的边。
Code:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#define N 500
#define inf 0x7fffffff
using namespace std;
struct Edge{
int v,next,res,cost;
}edge[100*N];
int n,f1,f2,d1,d2,p,num=1,S,T,ans;
int a[N],head[N],prev[N],prep[N],flow[N],dis[N],q[200*N];
bool vis[N];
int in(){
int x=0; char ch=getchar();
while (ch<‘0‘ || ch>‘9‘) ch=getchar();
while (ch>=‘0‘ && ch<=‘9‘) x=x*10+ch-‘0‘,ch=getchar();
return x;
}
void add(int u,int v,int res,int cost){
edge[++num].v=v; edge[num].next=head[u]; head[u]=num;
edge[num].res=res; edge[num].cost=cost;
}
void build(){
S=0; T=2*n+1;
for (int i=1; i<=n; i++){
add(S,i,a[i],0),add(i,S,0,0);
add(S,i+n,inf,p),add(i+n,S,0,-p);
add(i+n,T,a[i],0),add(T,i+n,0,0);
if (i!=n) add(i,i+1,inf,0),add(i+1,i,0,0);
if (i+d1<=n) add(i,i+n+d1,inf,f1),add(i+n+d1,i,0,-f1);
if (i+d2<=n) add(i,i+n+d2,inf,f2),add(i+n+d2,i,0,-f2);
}
}
bool spfa(){
int h=0,t=1;
memset(dis,0x7f,sizeof(dis));
memset(vis,0,sizeof(vis));
dis[S]=0; q[h]=S; vis[S]=1;
flow[S]=inf; prep[S]=-1;
while (h<t){
int u=q[h++]; vis[u]=false;
for (int i=head[u]; i; i=edge[i].next){
int v=edge[i].v;
if (edge[i].res>0 && dis[v]>dis[u]+edge[i].cost){
dis[v]=dis[u]+edge[i].cost;
prep[v]=u; prev[v]=i;
flow[v]=min(flow[u],edge[i].res);
if (!vis[v]) vis[v]=1,q[t++]=v;
}
}
}
if (dis[T]>10000100) return false;
return true;
}
void work(){
for (int i=T; i!=S; i=prep[i]){
edge[prev[i]].res-=flow[T];
edge[prev[i]^1].res+=flow[T];
}
ans+=flow[T]*dis[T];
}
int main(){
n=in();
for (int i=1; i<=n; i++) a[i]=in();
p=in(),d1=in(),f1=in(),d2=in(),f2=in();
build(); ans=0;
while (spfa()) work();
printf("%d\n",ans);
return 0;
}
标签:
原文地址:http://blog.csdn.net/morestep/article/details/46126271