码迷,mamicode.com
首页 > 其他好文 > 详细

机器学习的相关书籍

时间:2014-04-27 23:32:07      阅读:526      评论:0      收藏:0      [点我收藏+]

标签:com   tar   get   log   cti   算法   res   phi   odi   list   int   

《Introduction to Data Mining》

《Data Mining : Concepts and Techniques》

《Introduction to Machine Learning》

《机器学习:实用案例解析》

 

《Pattern Recognition and Machine Learning》

《The Elements of Statistical Learning》

《Machine Learning: A Probabilistic Perspective》

第一本比较偏Bayesian;第二本比较偏Frequentist;第三本在两者之间,但我觉得跟第一本差不多,不过 加了不少新内容。当然除了这几本大而全的,还有很多介绍不同领域的书,例如《Boosting Foundations and Algorithms》,《Probabilistic Graphical Models Principles and Techniques》;以   及理论一些的《Foundations of Machine Learning》,《Optimization for Machine Learning》等等。这些书的课后习题也非常有用,做了才会在自己写Paper的时候推公式。

 

论文
包括几个相关会议:KDD,ICML,NIPS,IJCAI,AAAI,WWW,SIGIR,ICDM;以及几个相关的期刊:TKDD,TKDE,JMLR,PAMI等。跟踪新技术跟新的热点问题。当然,如果做相关research,这一步是必须的。例如我们组的风格就是上半年读Paper,暑假找问题,秋天做实验,春节左右写/投论文。

 

 

经典算法。有几个部分:
a. 关联规则挖掘 (Apriori, FPTree, etc.)
b. 分类 (C4.5, KNN, Logistic Regression, SVM, etc.)
c. 聚类 (Kmeans, DBScan, Spectral Clustering, etc.)
d. 降维 (PCA, LDA, etc.)
e. 推荐系统 (基于内容的推荐,协同过滤,如矩阵分解等)
然后在公开数据集上测试,看实现的效果。可以在下面的网站找到大量的公开数据集:UCI Machine Learning Repository/

 

3. 跟踪热点问题。例如最近几年的Recommendation System,Social Network,Behavior Targeting等等,很多公司的业务都会涉及这些方面。以及一些热点技术,例如现在很火的Deep Learning。
4. 学习大规模并行计算的技术,例如MapReduce、MPI,GPU Computing。基本每个大公司都会用到这些技术,因为现实的数据量非常大,基本都是在计算集群上实现的。
5. 参加实际的数据挖掘的竞赛,例如KDDCUP,或 Kaggle: Go from Big Data to Big Analytics/ 上面的竞赛。这个过程会训练你如何在一个短的时间内解决一个实际的问题,并熟悉整个数据挖掘项目的全过程。
6. 参与一个开源项目,如上面提到的Shogun或scikit-learn还有Apache的Mahout,或为一些流行算法提供更加有效快速的实现,例如实现一个Map/Reduce平台下的SVM。这也是锻炼Coding的能力。

机器学习的相关书籍,布布扣,bubuko.com

机器学习的相关书籍

标签:com   tar   get   log   cti   算法   res   phi   odi   list   int   

原文地址:http://www.cnblogs.com/zjjsxuqiang/p/3695227.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!