标签:
http://poj.org/problem?id=3237
Description
You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edges are numbered 1 through N ? 1. Each edge is associated with a weight. Then you are to execute a series of instructions on the tree. The instructions can be one of the following forms:
CHANGE i v |
Change the weight of the ith edge to v |
NEGATE a b |
Negate the weight of every edge on the path from a to b |
QUERY a b |
Find the maximum weight of edges on the path from a to b |
Input
The input contains multiple test cases. The first line of input contains an integer t (t ≤ 20), the number of test cases. Then follow the test cases.
Each test case is preceded by an empty line. The first nonempty line of its contains N (N ≤ 10,000). The next N ? 1 lines each contains three integers a, b and c, describing an edge connecting nodes a and bwith
weight c. The edges are numbered in the order they appear in the input. Below them are the instructions, each sticking to the specification above. A lines with the word “DONE
” ends the test case.
Output
For each “QUERY
” instruction, output the result on a separate line.
Sample Input
1 3 1 2 1 2 3 2 QUERY 1 2 CHANGE 1 3 QUERY 1 2 DONE
Sample Output
1 3
/** poj 3237 树链剖分(区间更新,区间查询) 题目大意:给定一棵树,动态修改:1.对于给定的两点之间的所有边权取相反数,2对于给定边修改值,动态查询:指定两点间边权最大值 解题思路:树链剖分。在线段树区间维护的时候要维护一个最大值和一个最小值,因为一翻转二者就会相互装换 */ #include <string.h> #include <stdio.h> #include <algorithm> #include <iostream> using namespace std; typedef long long LL; const int maxn=10005; int fa[maxn],dep[maxn],son[maxn],d[maxn][3],num[maxn],top[maxn],siz[maxn]; int n,z,maxx[maxn*4],minn[maxn*4],col[maxn*4]; int head[maxn],ip; void init() { memset(col,0,sizeof(col)); memset(head,-1,sizeof(head)); ip=0; } struct note { int v,w,next; } edge[maxn*4]; void addedge(int u,int v,int w) { edge[ip].v=v,edge[ip].w=w,edge[ip].next=head[u],head[u]=ip++; } void dfs(int u,int pre) { son[u]=0,siz[u]=1,dep[u]=dep[pre]+1,fa[u]=pre; for(int i=head[u]; i!=-1; i=edge[i].next) { int v=edge[i].v; if(v==pre)continue; dfs(v,u); siz[u]+=siz[v]; if(siz[son[u]]<siz[v]) { son[u]=v; } } ///printf("%d son fa dep %d %d %d\n",u,son[u],fa[u],dep[u]); } void init_que(int u,int tp) { num[u]=++z,top[u]=tp; if(son[u]) { init_que(son[u],tp); } for(int i=head[u]; i!=-1; i=edge[i].next) { int v=edge[i].v; if(v==fa[u]||v==son[u])continue; init_que(v,v); } // printf("%d top num %d %d\n",u,top[u],num[u]); } void push_up(int root) { maxx[root]=max(maxx[root<<1],maxx[root<<1|1]); minn[root]=min(minn[root<<1],minn[root<<1|1]); } void push_down(int root) { if(col[root]) { maxx[root<<1|1]=-maxx[root<<1|1]; minn[root<<1|1]=-minn[root<<1|1]; swap(maxx[root<<1|1],minn[root<<1|1]); maxx[root<<1]=-maxx[root<<1]; minn[root<<1]=-minn[root<<1]; swap(maxx[root<<1],minn[root<<1]); col[root<<1]^=1; col[root<<1|1]^=1; col[root]=0; } } void update(int root,int l,int r,int loc,int z) { if(l>loc||r<loc)return; if(l==r) { col[root]=0; maxx[root]=z; minn[root]=z; return; } push_down(root); int mid=(l+r)>>1; update(root<<1,l,mid,loc,z); update(root<<1|1,mid+1,r,loc,z); push_up(root); } void update1(int root, int l,int r,int x,int y) { if(l>y||r<x)return; if(x<=l&&r<=y) { maxx[root]=-maxx[root]; minn[root]=-minn[root]; swap(maxx[root],minn[root]); col[root]^=1; return; } push_down(root); int mid=(l+r)>>1; update1(root<<1,l,mid,x,y); update1(root<<1|1,mid+1,r,x,y); push_up(root); } int query(int root ,int l,int r,int x,int y) { if(l>y||r<x)return -0x3f3f3f3f; if(x<=l&&r<=y) { return maxx[root]; } push_down(root); int mid=(l+r)>>1; return max(query(root<<1,l,mid,x,y),query(root<<1|1,mid+1,r,x,y)); } int main() { ///freopen("data.txt","r",stdin); int T; scanf("%d",&T); while(T--) { scanf("%d",&n); init(); for(int i=1; i<n; i++) { int u,v,w; scanf("%d%d%d",&u,&v,&w); d[i][0]=u,d[i][1]=v,d[i][2]=w; addedge(u,v,w); addedge(v,u,w); } int root=(n+1)>>1; z=0,siz[0]=0,dep[0]=0; dfs(root,0); init_que(root,root); for(int i=1; i<n; i++) { if(dep[d[i][0]]>dep[d[i][1]]) { swap(d[i][0],d[i][1]); } update(1,1,z,num[d[i][1]],d[i][2]); } while(1) { char s[10]; scanf("%s",s); if(s[0]=='D')break; int x,y; scanf("%d%d",&x,&y); if(s[0]=='C') { update(1,1,z,num[d[x][1]],y); } else if(s[0]=='N') { int f1=top[x],f2=top[y]; while(f1!=f2) { if(dep[f1]<dep[f2]) { swap(f1,f2); swap(x,y); } if(x!=y) { update1(1,1,z,num[f1],num[x]); x=fa[f1],f1=top[x]; } } if(x!=y) { if(dep[x]>dep[y]) { swap(x,y); } update1(1,1,z,num[son[x]],num[y]); } } else { int f1=top[x],f2=top[y]; int sum=-0x3f3f3f3f; while(f1!=f2) { if(dep[f1]<dep[f2]) { swap(f1,f2); swap(x,y); } sum=max(sum,query(1,1,z,num[f1],num[x])); x=fa[f1],f1=top[x]; } if(x!=y) { if(dep[x]>dep[y]) { swap(x,y); } sum=max(query(1,1,z,num[son[x]],num[y]),sum); } printf("%d\n",sum); } } } return 0; }
标签:
原文地址:http://blog.csdn.net/lvshubao1314/article/details/46237841