标签:project euler c++
By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)
安装这题目的说法,可以暴力搜索来做
自顶向下:
#include <iostream> using namespace std; int main() { int s[15][15]; for (int i = 0; i < 15; i++) { for (int j = 0; j <= i; j++) cin >> s[i][j]; } for (int i = 1; i < 15; i++) { for (int j = 1; j <= i; j++) { if (j == 0) { s[i][j] += s[i - 1][j]; } else if (i == j) s[i][j] += s[i - 1][j - 1]; else { int tp = s[i - 1][j - 1] > s[i - 1][j] ? s[i - 1][j - 1] : s[i - 1][j]; s[i][j] += tp; } } } int res = 0; for (int i = 0; i < 15; i++) { if (res < s[14][i]) res = s[14][i]; } cout << res << endl; system("pause"); return 0; }
自底向上:
#include <iostream> using namespace std; int main() { int s[15][15]; for (int i = 0; i < 15; i++) { for (int j = 0; j <= i; j++) cin >> s[i][j]; } for (int i = 14; i >0; i--) { for (int j = 0; j < i; j++) { int tp = s[i][j]>s[i][j + 1] ? s[i][j] : s[i][j + 1]; s[i - 1][j] += tp; } } cout << s[0][0] << endl; system("pause"); return 0; }
Project Euler:Problem 18 Maximum path sum I
标签:project euler c++
原文地址:http://blog.csdn.net/youb11/article/details/46286355