标签:
Implement a trie with insert
, search
, and startsWith
methods.
Note:
You may assume that all inputs are consist of lowercase letters a-z
.
思路分析:这题主要考察Trie 即前缀树的实现,Trie可以用于字典的压缩存储,可以节省空间,但是不节省时间(和HashSet相比)。这题实质是实现一颗多叉树(分支因子26)的插入和查找操作。定义每个TrieNode保存char c,保存一个HashMap用于储存所有的孩子节点,key是对应的字符,value是孩子节点,定义flag hasWord来标记这个node上是否存在word。对于插入操作,直接从上向下分层扫描树,如果没有对应字符节点存在就新建节点,如果有就去相应路径向下探察。对于查询操作,前缀树的定义可以保证当我们从前向后扫描字符串时候,每一个字符都可以从上到下对应前缀树的每一层,所以扫描过程中如果有任何一个字符不存在于当前层中,就可以立刻停止查找返回null,也就是不存在这样的word或者前缀,否则继续从对应的分支向下探察。时间复杂度是O(L),L是树的高度,也就是最长word的长度,空间复杂度26^L,每一层分支因子26,有L层。
AC Code
class TrieNode { // Initialize your data structure here. //0908 char c; HashMap<Character, TrieNode> children = new HashMap<Character, TrieNode>(); boolean hasWord; public TrieNode(){ } public TrieNode(char c){ this.c = c; } } public class Trie { private TrieNode root; public Trie() { root = new TrieNode(); } // Inserts a word into the trie. public void insert(String word) { TrieNode cur = root; HashMap<Character, TrieNode> curChildren = root.children; char[] wordArray = word.toCharArray(); for(int i = 0; i < wordArray.length; i++){ char wc = wordArray[i]; if(curChildren.containsKey(wc)){ cur = curChildren.get(wc); } else { TrieNode newNode = new TrieNode(wc); curChildren.put(wc, newNode); cur = newNode; } curChildren = cur.children; if(i == wordArray.length - 1){ cur.hasWord= true; } } } // Returns if the word is in the trie. public boolean search(String word) { if(searchWordNodePos(word) == null){ return false; } else if(searchWordNodePos(word).hasWord) return true; else return false; } // Returns if there is any word in the trie // that starts with the given prefix. public boolean startsWith(String prefix) { if(searchWordNodePos(prefix) == null){ return false; } else return true; } public TrieNode searchWordNodePos(String s){ HashMap<Character, TrieNode> children = root.children; TrieNode cur = null; char[] sArray = s.toCharArray(); for(int i = 0; i < sArray.length; i++){ char c = sArray[i]; if(children.containsKey(c)){ cur = children.get(c); children = cur.children; } else{ return null; } } return cur; } } // Your Trie object will be instantiated and called as such: // Trie trie = new Trie(); // trie.insert("somestring"); // trie.search("key"); //0918
LeetCode Implement Trie (Prefix Tree)
标签:
原文地址:http://blog.csdn.net/yangliuy/article/details/46287671