题目: Given an array S of n integers, are there elements a,b,c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero. Note: ? Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c) ? The solution set must not contain duplicate triplets. For example, given array S = {-1 0 1 2 -1 -4}. A solution set is: (-1, 0, 1) (-1, -1, 2) 分析:暴力求解时间复杂度为O(n3),效率太低,不考虑,这里使用2sum中的第三种方法。先排序然后左右夹逼,类似二分查找的思想。 代码:#include "stdafx.h" #include <iostream> #include <vector> #include <algorithm> using namespace std; class Solution{ public: vector<vector<int>> threeSum(vector<int>& num) { vector<vector<int>> result; vector<int> temp(3); if (num.size() < 3) return result; sort(num.begin(),num.end()); const int target =0; auto last = num.end();//在C++11标准的语法中,auto被定义为自动推断变量的类型。 cout << *(last-1) << *num.begin(); for (auto i = num.begin(); i < last-2; ++i) { auto j = i+1; if (i > num.begin() && *i == *(i-1)) continue;//排除,相同数字的情况 auto k = last-1; while (j < k) { if (*i + *j + *k < target) { ++j; while(*j == *(j - 1) && j < k) ++j;//排除,相同数字的情况 } else if (*i + *j + *k > target) { --k; while(*k == *(k + 1) && j < k) --k;//排除,相同数字的情况 } else { temp[0] = *i; temp[1] = *j; temp[2] = *k; result.push_back(temp); ++j; --k; while(*j == *(j - 1) && *k == *(k + 1) && j < k) --k;//或++j } } } return result; } }; int _tmain(int argc, _TCHAR* argv[]) { vector<int> v1; vector<vector<int>> v2; v1.push_back(-1); v1.push_back(0); v1.push_back(1); v1.push_back(2); v1.push_back(-1); v1.push_back(-4); Solution s; v2 = s.threeSum(v1); vector<vector<int>>::iterator v2_Iter; vector <int>::iterator v1_Iter; for ( v2_Iter = v2.begin( ) ; v2_Iter != v2.end( ) ; v2_Iter++ ){ cout << "v2 =" ; for(v1_Iter = (*v2_Iter).begin();v1_Iter != (*v2_Iter).end();v1_Iter++){ cout << " " << *v1_Iter; } cout << endl; } system("pause"); return 0; }总结:像这种可以排序而没有排序的数组,我们可以先排序,然后再操作,这样可以降低时间复杂度,对于有序的数组我们永远第一想法就是二分查找的这种夹逼的思想。
如果每个数字对应有其他一些信息,使用hash是个不错做法。
原文地址:http://blog.csdn.net/z702143700/article/details/46287627