标签:
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 6587 | Accepted: 4687 |
The nth Triangular number, T(n) = 1 + … + n, is the sum of the first n integers. It is the number of points in a triangular array with n points on side. For example T(4):
X
X X
X X X
X X X X
Write a program to compute the weighted sum of triangular numbers:
W(n) = SUM[k = 1…n; k * T(k + 1)]
The first line of input contains a single integer N, (1 ≤ N ≤ 1000) which is the number of datasets that follow.
Each dataset consists of a single line of input containing a single integer n, (1 ≤ n ≤300), which is the number of points on a side of the triangle.
For each dataset, output on a single line the dataset number (1 through N), a blank, the value of n for the dataset, a blank, and the weighted sum ,W(n), of triangular numbers for n.
4
3
4
5
10
1 3 45
2 4 105
3 5 210
4 10 2145
CODE:
#include <iostream> #include <cstdio> #include <cstring> #include <climits> #define REP(i, s, n) for(int i = s; i <= n; i ++) #define REP_(i, s, n) for(int i = n; i >= s; i --) #define MAX_N 300 + 10 using namespace std; int n, x; int sum[MAX_N]; int main(){ sum[0] = 0; REP(i, 1, MAX_N) sum[i] = sum[i - 1] + i; scanf("%d", &n); REP(i, 1, n){ scanf("%d", &x); int res = 0; REP(i, 1, x) res += sum[i + 1] * i; printf("%d %d %d\n", i, x, res); } return 0; }
标签:
原文地址:http://www.cnblogs.com/ALXPCUN/p/4543189.html