码迷,mamicode.com
首页 > 其他好文 > 详细

CUDA_进行图像特征匹配V2.0

时间:2015-06-01 22:05:48      阅读:142      评论:0      收藏:0      [点我收藏+]

标签:

在V1.0的基础上改变了排序方式并对部分并行代码进行了优化

#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <string>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include <math.h>
#include<vector>
#include<algorithm>
#include<time.h>

using namespace std;


template<typename T>
void readMatrixfromTXT(const char *fileName, const int numColumn, const int numRow, T *matrix);
float CalDist(float*mat, int row, int col);

int getFileColumns(const char *fileName);
int getFileRows(const char *fileName);

cudaStream_t stream[3];
int gpu[3] = { 3,4,5 };

typedef struct data_ind{
float data;
float i;
};

#define inf 1000000
#define CUDA_CHECK_RETURN(value) { \
cudaError_t _m_cudaStat = value; \
if (_m_cudaStat != cudaSuccess) { \
fprintf(stderr, "Error %s at line %d in file %s\n", \
cudaGetErrorString(_m_cudaStat), __LINE__, __FILE__); \
exit(1); \
} }

void checkCUDAError(const char *msg)
{
cudaError_t err = cudaGetLastError();
if (cudaSuccess != err)
{
fprintf(stderr, "Cuda error: %s: %s.\n", msg, cudaGetErrorString(err));
exit(-1);
}
}


const int M = 181, N = 14, M1 = 168, N1 = 14, M2 = 168, N2 = 14;
__constant__ float test[13] = { 131.0000, 5.2004, 0.5679, 1.5263, 2.1928, 2.78, 5.2777, 4.2365, 5.2146, 3.3337, 2.9507, 1.7726, 3.1895 };

const float test1[13] = { 131.0000, 5.2004, 0.5679, 1.5263, 2.1928, 2.78, 5.2777, 4.2365, 5.2146, 3.3337, 2.9507, 1.7726, 3.1895 };


__global__ void reduceComp (float *g_idata, float *g_odata,int N, int blockSize)
{
volatile __shared__ data_ind sdata[512], sdata1[512], sdata2[512];
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockSize*2) + tid;
sdata[tid].data = inf;sdata[tid].i = tid;
sdata1[tid].data = inf;sdata1[tid].i = tid;
sdata2[tid].data = inf;sdata2[tid].i = tid;

if(i+blockSize<N){
sdata[tid] .data=( g_idata[i] <=g_idata[i+blockSize]?g_idata[i]:g_idata[i+blockSize]);
sdata1[tid].data=sdata[tid].data;
sdata2[tid].data=sdata[tid].data;}
else if(i<N){
sdata[tid] .data=g_idata[i];
sdata1[tid].data=sdata[tid].data;
sdata2[tid].data=sdata[tid].data;
}
else{
sdata[tid] .data=inf;
sdata1[tid].data=inf;
sdata2[tid].data=inf;
}
__syncthreads();

/********************** Sort firt1****************************/


if (blockSize >= 1024) { if (tid < 1024) { int flagg=(sdata[tid].data<=sdata[tid + 512].data? 0:1); sdata[tid].data=sdata[tid+flagg*512].data;sdata[tid].i=tid+flagg*512;}
__syncthreads(); }
if (blockSize >= 512) { if (tid < 256) { int flagg=(sdata[tid].data<=sdata[tid + 256].data? 0:1); sdata[tid].data=sdata[tid+flagg*256].data;sdata[tid].i=tid+flagg*256;}
__syncthreads(); }
if (blockSize >= 256) { if (tid < 128) { int flagg=(sdata[tid].data<=sdata[tid + 128].data? 0:1); sdata[tid].data=sdata[tid+flagg*128].data;sdata[tid].i=tid+flagg*128;}
__syncthreads(); }
if (blockSize >= 128) { if (tid < 64) { int flagg=(sdata[tid].data<=sdata[tid + 64].data? 0:1); sdata[tid].data=sdata[tid+flagg*64].data;sdata[tid].i=tid+flagg*64;}
__syncthreads(); }
if (tid < 32) {
if (blockSize >= 64) {int flagg =(sdata[tid].data<=sdata[tid + 32].data? 0:1);sdata[tid].data=sdata[tid+flagg*32].data;sdata[tid].i=sdata[tid+flagg*32].i;}
if (blockSize >= 32) {int flagg =(sdata[tid].data<=sdata[tid + 16].data? 0:1);sdata[tid].data=sdata[tid+flagg*16].data;sdata[tid].i=sdata[tid+flagg*16].i;}
if (blockSize >= 16) {int flagg =(sdata[tid].data<=sdata[tid + 8].data? 0:1);sdata[tid].data=sdata[tid+flagg*8].data;sdata[tid].i=sdata[tid+flagg*8].i;}
if (blockSize >= 8){int flagg =(sdata[tid].data<=sdata[tid + 4].data? 0:1);sdata[tid].data=sdata[tid+flagg*4].data;sdata[tid].i=sdata[tid+flagg*4].i;}
if (blockSize >= 4) {int flagg =(sdata[tid].data<=sdata[tid + 2].data? 0:1);sdata[tid].data=sdata[tid+flagg*2].data;sdata[tid].i=sdata[tid+flagg*2].i;}
if (blockSize >= 2){int flagg =(sdata[tid].data<=sdata[tid + 1].data? 0:1);sdata[tid].data=sdata[tid+flagg*1].data;sdata[tid].i=sdata[tid+flagg*1].i;}
}
__syncthreads();
if (tid == 0){ g_odata[3*blockIdx.x] = sdata[0].data;sdata1[int(sdata[0].i)].data=inf;sdata2[int(sdata[0].i)].data=inf;}
//g_odata[3*blockIdx.x]=16;

/********************** Sort second****************************/

 


if (blockSize >= 1024) { if (tid < 1024) { int flagg=(sdata1[tid].data<=sdata1[tid + 512].data? 0:1); sdata1[tid].data=sdata1[tid+flagg*512].data;sdata1[tid].i=tid+flagg*512;}
__syncthreads(); }
if (blockSize >= 512) { if (tid < 256) { int flagg=(sdata1[tid].data<=sdata1[tid + 256].data? 0:1); sdata1[tid].data=sdata1[tid+flagg*256].data;sdata1[tid].i=tid+flagg*256;}
__syncthreads(); }
if (blockSize >= 256) { if (tid < 128) { int flagg=(sdata1[tid].data<=sdata1[tid + 128].data? 0:1); sdata1[tid].data=sdata1[tid+flagg*128].data;sdata1[tid].i=tid+flagg*128;}
__syncthreads(); }
if (blockSize >= 128) { if (tid < 64) { int flagg=(sdata1[tid].data<=sdata1[tid + 64].data? 0:1); sdata1[tid].data=sdata1[tid+flagg*64].data;sdata1[tid].i=tid+flagg*64;}
__syncthreads(); }
if (tid < 32) {
if (blockSize >= 64) {int flagg =(sdata1[tid].data<=sdata1[tid + 32].data? 0:1);sdata1[tid].data=sdata1[tid+flagg*32].data;sdata1[tid].i=sdata1[tid+flagg*32].i;}
if (blockSize >= 32) {int flagg =(sdata1[tid].data<=sdata1[tid + 16].data? 0:1);sdata1[tid].data=sdata1[tid+flagg*16].data;sdata1[tid].i=sdata1[tid+flagg*16].i;}
if (blockSize >= 16) {int flagg =(sdata1[tid].data<=sdata1[tid + 8].data? 0:1);sdata1[tid].data=sdata1[tid+flagg*8].data;sdata1[tid].i=sdata1[tid+flagg*8].i;}
if (blockSize >= 8){int flagg =(sdata1[tid].data<=sdata1[tid + 4].data? 0:1);sdata1[tid].data=sdata1[tid+flagg*4].data;sdata1[tid].i=sdata1[tid+flagg*4].i;}
if (blockSize >= 4) {int flagg =(sdata1[tid].data<=sdata1[tid + 2].data? 0:1);sdata1[tid].data=sdata1[tid+flagg*2].data;sdata1[tid].i=sdata1[tid+flagg*2].i;}
if (blockSize >= 2){int flagg =(sdata1[tid].data<=sdata1[tid + 1].data? 0:1);sdata1[tid].data=sdata1[tid+flagg*1].data;sdata1[tid].i=sdata1[tid+flagg*1].i;}
}
__syncthreads();
if (tid == 0){ g_odata[3*blockIdx.x+1] = sdata1[0].data;sdata[int(sdata1[0].i)].data=inf;sdata2[int(sdata1[0].i)].data=inf;}
//g_odata[3*blockIdx.x+1]=16;

 

/********************** Sort third****************************/


if (blockSize >= 1024) { if (tid < 1024) { int flagg=(sdata2[tid].data<=sdata2[tid + 512].data? 0:1); sdata2[tid].data=sdata2[tid+flagg*512].data;sdata2[tid].i=tid+flagg*512;}
__syncthreads(); }
if (blockSize >= 512) { if (tid < 256) { int flagg=(sdata2[tid].data<=sdata2[tid + 256].data? 0:1); sdata2[tid].data=sdata2[tid+flagg*256].data;sdata2[tid].i=tid+flagg*256;}
__syncthreads(); }
if (blockSize >= 256) { if (tid < 128) { int flagg=(sdata2[tid].data<=sdata2[tid + 128].data? 0:1); sdata2[tid].data=sdata2[tid+flagg*128].data;sdata2[tid].i=tid+flagg*128;}
__syncthreads(); }
if (blockSize >= 128) { if (tid < 64) { int flagg=(sdata2[tid].data<=sdata2[tid + 64].data? 0:1); sdata2[tid].data=sdata2[tid+flagg*64].data;sdata2[tid].i=tid+flagg*64;}
__syncthreads(); }
if (tid < 32) {
if (blockSize >= 64) {int flagg =(sdata2[tid].data<=sdata2[tid + 32].data? 0:1);sdata2[tid].data=sdata2[tid+flagg*32].data;sdata2[tid].i=sdata2[tid+flagg*32].i;}
if (blockSize >= 32) {int flagg =(sdata2[tid].data<=sdata2[tid + 16].data? 0:1);sdata2[tid].data=sdata2[tid+flagg*16].data;sdata2[tid].i=sdata2[tid+flagg*16].i;}
if (blockSize >= 16) {int flagg =(sdata2[tid].data<=sdata2[tid + 8].data? 0:1);sdata2[tid].data=sdata2[tid+flagg*8].data;sdata2[tid].i=sdata2[tid+flagg*8].i;}
if (blockSize >= 8){int flagg =(sdata2[tid].data<=sdata2[tid + 4].data? 0:1);sdata2[tid].data=sdata2[tid+flagg*4].data;sdata2[tid].i=sdata2[tid+flagg*4].i;}
if (blockSize >= 4) {int flagg =(sdata2[tid].data<=sdata2[tid + 2].data? 0:1);sdata2[tid].data=sdata2[tid+flagg*2].data;sdata2[tid].i=sdata2[tid+flagg*2].i;}
if (blockSize >= 2){int flagg =(sdata2[tid].data<=sdata2[tid + 1].data? 0:1);sdata2[tid].data=sdata2[tid+flagg*1].data;sdata2[tid].i=sdata2[tid+flagg*1].i;}
}
__syncthreads();
if (tid == 0){ g_odata[3*blockIdx.x+2] = sdata2[0].data;}
//g_odata[3*blockIdx.x+2]=16;
}

 

__global__ void global_sort(float * a/*first three*blockNum1 element find by CalDis_Sort */, float*first_thr/*first three minimum */, int N)//improved rank sort
{
int index = blockDim.x*blockIdx.x + threadIdx.x;
first_thr[0] = inf;
first_thr[1] = inf;
first_thr[2] = inf;
if (index<N){
float temp = a[index];
int k = 0;
for (int j = 0; j < N; j++)
{
if (temp>a[j])
{
++k;
}
else if (temp == a[j] && index>j)
{
++k;
}
}
if (k<3)first_thr[k] = temp;
}
}


const int thdsPerblock_cal_dis=512;


__global__ void CalDis_Sort( float *b/*matrix to cal Euclidean dis*/, float *tosort, int R/*Matrix row number*/, int C/*colum number*/,int blockSize)
{
/********************** CalDis ****************************/

 

volatile __shared__ data_ind sdata[thdsPerblock_cal_dis], sdata1[thdsPerblock_cal_dis], sdata2[thdsPerblock_cal_dis]; //__shared__ float first_three[3];
//__shared__ float share_test[13];
int tid = threadIdx.x;
int index = tid + blockIdx.x*blockDim.x;
// temp[index] = 100000;
sdata[tid].data = inf;sdata1[tid].data = inf;sdata2[tid].data = inf;sdata[tid].i =tid;sdata1[tid].i =tid;sdata2[tid].i =tid;

//if (tid < 13) share_test[tid] = test[tid];

__syncthreads();
// for(int i=0;i<13;i++)
// share_test[i] = test[i];
float temp_add = 0;
if (index<R)
{
if (abs(test[0] - b[index]) <= 10)
{
for (int i = 1; i < 13; i++)
{
float addup = test[i] - b[i*R + index];
temp_add += addup*addup;
}
sdata[tid].data = temp_add;
sdata1[tid].data = temp_add;
sdata2[tid].data = temp_add;

}
// temp[thdI] = 1000;
}
__syncthreads();
/********************** Sort firt1****************************/


if (blockSize >= 1024) { if (tid < 1024) { int flagg=(sdata[tid].data<=sdata[tid + 512].data? 0:1); sdata[tid].data=sdata[tid+flagg*512].data;sdata[tid].i=tid+flagg*512;}
__syncthreads(); }
if (blockSize >= 512) { if (tid < 256) { int flagg=(sdata[tid].data<=sdata[tid + 256].data? 0:1); sdata[tid].data=sdata[tid+flagg*256].data;sdata[tid].i=tid+flagg*256;}
__syncthreads(); }
if (blockSize >= 256) { if (tid < 128) { int flagg=(sdata[tid].data<=sdata[tid + 128].data? 0:1); sdata[tid].data=sdata[tid+flagg*128].data;sdata[tid].i=tid+flagg*128;}
__syncthreads(); }
if (blockSize >= 128) { if (tid < 64) { int flagg=(sdata[tid].data<=sdata[tid + 64].data? 0:1); sdata[tid].data=sdata[tid+flagg*64].data;sdata[tid].i=tid+flagg*64;}
__syncthreads(); }
if (tid < 32) {
if (blockSize >= 64) {int flagg =(sdata[tid].data<=sdata[tid + 32].data? 0:1);sdata[tid].data=sdata[tid+flagg*32].data;sdata[tid].i=sdata[tid+flagg*32].i;}
if (blockSize >= 32) {int flagg =(sdata[tid].data<=sdata[tid + 16].data? 0:1);sdata[tid].data=sdata[tid+flagg*16].data;sdata[tid].i=sdata[tid+flagg*16].i;}
if (blockSize >= 16) {int flagg =(sdata[tid].data<=sdata[tid + 8].data? 0:1);sdata[tid].data=sdata[tid+flagg*8].data;sdata[tid].i=sdata[tid+flagg*8].i;}
if (blockSize >= 8){int flagg =(sdata[tid].data<=sdata[tid + 4].data? 0:1);sdata[tid].data=sdata[tid+flagg*4].data;sdata[tid].i=sdata[tid+flagg*4].i;}
if (blockSize >= 4) {int flagg =(sdata[tid].data<=sdata[tid + 2].data? 0:1);sdata[tid].data=sdata[tid+flagg*2].data;sdata[tid].i=sdata[tid+flagg*2].i;}
if (blockSize >= 2){int flagg =(sdata[tid].data<=sdata[tid + 1].data? 0:1);sdata[tid].data=sdata[tid+flagg*1].data;sdata[tid].i=sdata[tid+flagg*1].i;}
}
__syncthreads();
if (tid == 0){ tosort[3*blockIdx.x] = sdata[0].data;sdata1[int(sdata[0].i)].data=inf;sdata2[int(sdata[0].i)].data=inf;}

/********************** Sort second****************************/

 


if (blockSize >= 1024) { if (tid < 1024) { int flagg=(sdata1[tid].data<=sdata1[tid + 512].data? 0:1); sdata1[tid].data=sdata1[tid+flagg*512].data;sdata1[tid].i=tid+flagg*512;}
__syncthreads(); }
if (blockSize >= 512) { if (tid < 256) { int flagg=(sdata1[tid].data<=sdata1[tid + 256].data? 0:1); sdata1[tid].data=sdata1[tid+flagg*256].data;sdata1[tid].i=tid+flagg*256;}
__syncthreads(); }
if (blockSize >= 256) { if (tid < 128) { int flagg=(sdata1[tid].data<=sdata1[tid + 128].data? 0:1); sdata1[tid].data=sdata1[tid+flagg*128].data;sdata1[tid].i=tid+flagg*128;}
__syncthreads(); }
if (blockSize >= 128) { if (tid < 64) { int flagg=(sdata1[tid].data<=sdata1[tid + 64].data? 0:1); sdata1[tid].data=sdata1[tid+flagg*64].data;sdata1[tid].i=tid+flagg*64;}
__syncthreads(); }
if (tid < 32) {
if (blockSize >= 64) {int flagg =(sdata1[tid].data<=sdata1[tid + 32].data? 0:1);sdata1[tid].data=sdata1[tid+flagg*32].data;sdata1[tid].i=sdata1[tid+flagg*32].i;}
if (blockSize >= 32) {int flagg =(sdata1[tid].data<=sdata1[tid + 16].data? 0:1);sdata1[tid].data=sdata1[tid+flagg*16].data;sdata1[tid].i=sdata1[tid+flagg*16].i;}
if (blockSize >= 16) {int flagg =(sdata1[tid].data<=sdata1[tid + 8].data? 0:1);sdata1[tid].data=sdata1[tid+flagg*8].data;sdata1[tid].i=sdata1[tid+flagg*8].i;}
if (blockSize >= 8){int flagg =(sdata1[tid].data<=sdata1[tid + 4].data? 0:1);sdata1[tid].data=sdata1[tid+flagg*4].data;sdata1[tid].i=sdata1[tid+flagg*4].i;}
if (blockSize >= 4) {int flagg =(sdata1[tid].data<=sdata1[tid + 2].data? 0:1);sdata1[tid].data=sdata1[tid+flagg*2].data;sdata1[tid].i=sdata1[tid+flagg*2].i;}
if (blockSize >= 2){int flagg =(sdata1[tid].data<=sdata1[tid + 1].data? 0:1);sdata1[tid].data=sdata1[tid+flagg*1].data;sdata1[tid].i=sdata1[tid+flagg*1].i;}
}
__syncthreads();
if (tid == 0){ tosort[3*blockIdx.x+1] = sdata1[0].data;sdata2[int(sdata1[0].i)].data=inf;}

 


/********************** Sort third****************************/


if (blockSize >= 1024) { if (tid < 1024) { int flagg=(sdata2[tid].data<=sdata2[tid + 512].data? 0:1); sdata2[tid].data=sdata2[tid+flagg*512].data;sdata2[tid].i=tid+flagg*512;}
__syncthreads(); }
if (blockSize >= 512) { if (tid < 256) { int flagg=(sdata2[tid].data<=sdata2[tid + 256].data? 0:1); sdata2[tid].data=sdata2[tid+flagg*256].data;sdata2[tid].i=tid+flagg*256;}
__syncthreads(); }
if (blockSize >= 256) { if (tid < 128) { int flagg=(sdata2[tid].data<=sdata2[tid + 128].data? 0:1); sdata2[tid].data=sdata2[tid+flagg*128].data;sdata2[tid].i=tid+flagg*128;}
__syncthreads(); }
if (blockSize >= 128) { if (tid < 64) { int flagg=(sdata2[tid].data<=sdata2[tid + 64].data? 0:1); sdata2[tid].data=sdata2[tid+flagg*64].data;sdata2[tid].i=tid+flagg*64;}
__syncthreads(); }
if (tid < 32) {
if (blockSize >= 64) {int flagg =(sdata2[tid].data<=sdata2[tid + 32].data? 0:1);sdata2[tid].data=sdata2[tid+flagg*32].data;sdata2[tid].i=sdata2[tid+flagg*32].i;}
if (blockSize >= 32) {int flagg =(sdata2[tid].data<=sdata2[tid + 16].data? 0:1);sdata2[tid].data=sdata2[tid+flagg*16].data;sdata2[tid].i=sdata2[tid+flagg*16].i;}
if (blockSize >= 16) {int flagg =(sdata2[tid].data<=sdata2[tid + 8].data? 0:1);sdata2[tid].data=sdata2[tid+flagg*8].data;sdata2[tid].i=sdata2[tid+flagg*8].i;}
if (blockSize >= 8){int flagg =(sdata2[tid].data<=sdata2[tid + 4].data? 0:1);sdata2[tid].data=sdata2[tid+flagg*4].data;sdata2[tid].i=sdata2[tid+flagg*4].i;}
if (blockSize >= 4) {int flagg =(sdata2[tid].data<=sdata2[tid + 2].data? 0:1);sdata2[tid].data=sdata2[tid+flagg*2].data;sdata2[tid].i=sdata2[tid+flagg*2].i;}
if (blockSize >= 2){int flagg =(sdata2[tid].data<=sdata2[tid + 1].data? 0:1);sdata2[tid].data=sdata2[tid+flagg*1].data;sdata2[tid].i=sdata2[tid+flagg*1].i;}
}
__syncthreads();
if (tid == 0){ tosort[3*blockIdx.x+2] = sdata2[0].data;}

}

 


class CRunGPU{
public:
cudaEvent_t start_gpu, end_gpu;
float consume_gpu;
int row;
float *BTR_train;

float *dev_first_thr;
float *dev_BTR_train;
float *dev_tosort;
float *tosort_host;
float *sort_block;
int temp_gpu;
cudaStream_t temp_stream;


int threadsPerBlock ;
int blocksPerGrid ;

int threadsPerBlock2;
int blocksPerGrid2 ;

int flag,flag2;
int R;
int C;
const char*fileName;
CRunGPU(const char*fileName, int R/*row*/, int C/*column*/,int flag)//construc function
{
this->R=R;
this->C=C;
this->fileName=fileName;
this->flag=flag;
row = thdsPerblock_cal_dis * int((R + thdsPerblock_cal_dis-1) / thdsPerblock_cal_dis);;
BTR_train = (float*)malloc(row*C*sizeof(float));

threadsPerBlock = thdsPerblock_cal_dis;
blocksPerGrid = (R + threadsPerBlock - 1) / threadsPerBlock;

threadsPerBlock2 = 512;
//blocksPerGrid2 = (blocksPerGrid * 3 + threadsPerBlock2 - 1) / threadsPerBlock2;
blocksPerGrid2 = ((blocksPerGrid * 3+1)/2 + threadsPerBlock2 - 1) / threadsPerBlock2;

cout<<"blocksPerGrid: "<<blocksPerGrid<<endl;
cout<<"blocksPerGrid2: "<<blocksPerGrid2<<endl;


cout << "BTR_train" << row << "C" << C << endl;
readMatrixfromTXT<float>(fileName, C, R, BTR_train);
tosort_host = (float *)malloc(3 * sizeof(float));
switch (flag)
{
case(0) : temp_stream = stream[0]; temp_gpu = gpu[0]; break;

case(1) : temp_stream = stream[1]; temp_gpu = gpu[1]; break;

case(2) : temp_stream = stream[2]; temp_gpu = gpu[2]; break;
}

cout << "malloc and copy " << endl;
cudaSetDevice(temp_gpu);
cudaStreamCreate(&temp_stream);
//CUDA_CHECK_RETURN(cudaMalloc((void**)&dev_test, 13 * sizeof(float)));

CUDA_CHECK_RETURN(cudaMalloc((void**)&dev_first_thr, 3*blocksPerGrid2* sizeof(float)));

CUDA_CHECK_RETURN(cudaMalloc((void**)&dev_BTR_train, C*row*sizeof(float)));
// CUDA_CHECK_RETURN(cudaMemcpyAsync(dev_test, test, 13 * sizeof(float), cudaMemcpyHostToDevice,temp_stream));
CUDA_CHECK_RETURN(cudaMemcpyAsync(dev_BTR_train, BTR_train, C*row*sizeof(float), cudaMemcpyHostToDevice, temp_stream));
cout << "start calculate" << endl;
cudaMalloc((void**)&dev_tosort, blocksPerGrid * 3* sizeof(float));
sort_block = (float *)malloc(blocksPerGrid2 * 3 * sizeof(float));
if(sort_block)
cout<<"malloc sort_block successful"<<endl;

}
void compute()
{
cudaSetDevice(temp_gpu);
// cudaEventCreate(&start_gpu);
// cudaEventCreate(&end_gpu);

// cudaEventRecord(start_gpu, temp_stream);
CalDis_Sort << <blocksPerGrid, threadsPerBlock, 3*800 * sizeof(float), temp_stream >> >( dev_BTR_train, dev_tosort, row, C,thdsPerblock_cal_dis);

checkCUDAError("CalDis_Sort");
// checkCUDAError("kernel invocation1");


//global_sort << <blocksPerGrid2, threadsPerBlock2, 400 * sizeof(float), temp_stream >> >(dev_tosort, dev_first_thr, blocksPerGrid * 3);
reduceComp<< <blocksPerGrid2, threadsPerBlock2, 512*2*3 * sizeof(float), temp_stream >> >(dev_tosort, dev_first_thr, blocksPerGrid * 3,threadsPerBlock2);

 

int num=blocksPerGrid *3;
flag2 =1;
while(num>3)
{

blocksPerGrid2 = (num + threadsPerBlock2 -1)/threadsPerBlock2;
if(flag2 == 1)
{
reduceComp << <blocksPerGrid2, threadsPerBlock2,512*2*3 * sizeof(float)+12, temp_stream >> >(dev_tosort, dev_first_thr,num,threadsPerBlock2); checkCUDAError("reduceComp");
flag2=0;
}
else
{
reduceComp << <blocksPerGrid2, threadsPerBlock2,512*2*3 * sizeof(float)+12, temp_stream >> >(dev_first_thr,dev_tosort,num,threadsPerBlock2); checkCUDAError("reduceComp");
flag2=1;
}
num = blocksPerGrid2*3;
}

 


}
float getResult()
{
cout<<"get result"<<endl;
CUDA_CHECK_RETURN(cudaMemcpyAsync(sort_block, dev_first_thr, 3* sizeof(float), cudaMemcpyDeviceToHost, temp_stream));
//cudaMemcpyAsync(sort_block, dev_tosort, 3*blocksPerGrid2* sizeof(float), cudaMemcpyDeviceToHost, temp_stream);
// for(int i=0;i< 3*blocksPerGrid2;i++)
// cout<<sort_block[0]<< endl;
// BubbleSortFirst3(sort_block, 3*blocksPerGrid2);
cout << fileName << "distance is" << endl;
float result=(sqrt(sort_block[0])+sqrt(sort_block[1])+sqrt(sort_block[2]))/3;
printf(":%f\n",result);
return result;
}

void BubbleSortFirst3(float* pData/*array*/, int count/*the dimension of array*/)
{
float temp;
for (int i = 0; i < 3; i++)
{
for (int j = count - 1; j > i; --j)
{
if (pData[j] < pData[j - 1])
{
temp = pData[j - 1];
pData[j - 1] = pData[j];
pData[j] = temp;
}
}
}
}

virtual ~CRunGPU()
{

switch (flag)
{
case(0) : temp_stream = stream[0]; temp_gpu = gpu[0]; break;

case(1) : temp_stream = stream[1]; temp_gpu = gpu[1]; break;

case(2) : temp_stream = stream[2]; temp_gpu = gpu[2]; break;
}
cudaSetDevice(temp_gpu);
CUDA_CHECK_RETURN(cudaFree(dev_BTR_train));
//CUDA_CHECK_RETURN(cudaFree(dev_test));
free(BTR_train);
free(tosort_host);
CUDA_CHECK_RETURN(cudaFree(dev_tosort));
CUDA_CHECK_RETURN(cudaFree(dev_first_thr));
free(sort_block);
}
};


//void runCPU(const char*fileName){}

#define MULNUM 1
#define GPUCYCLE 1000
#define CPUCYCLE 10

const char *fileNameBTR = "data/BTR.txt";const char *fileNameBMP = "data/BMP.txt";const char *fileNameT = "data/T.txt";

int main()
{
/********************************************`
/ GPU go first
/*******************************************/
printf("***********************START OF GPU***********************\n");
int row_M = getFileRows(fileNameBTR);
int row_M1 = getFileRows(fileNameBMP);
int row_M2 = getFileRows(fileNameT);
cout << row_M << endl;
cout << "creating array of stream and gpu success" << endl;
//double consume_gpu=10;

CRunGPU btr(fileNameBTR, row_M, N,0) ;
CRunGPU bmp(fileNameBMP, row_M1, N1,1) ;
CRunGPU t(fileNameT, row_M2, N2,2) ;

clock_t gpuParelledTime_b,gpuParelledTime_e;
gpuParelledTime_b=clock();
for(int i=0;i<GPUCYCLE;i++)
{
btr.compute();
bmp.compute();
t.compute();
cudaStreamSynchronize(btr.temp_stream);
cudaStreamSynchronize(bmp.temp_stream);
cudaStreamSynchronize(t.temp_stream);
// cudaEventSynchronize(btr.end_gpu); // ratio = 870
// cudaEventSynchronize(bmp.end_gpu); // ratio = 860
// cudaEventSynchronize(t.end_gpu); //ratio = 860
}
gpuParelledTime_e=clock();
double consume_gpu=(double)( gpuParelledTime_e - gpuParelledTime_b ) / CLOCKS_PER_SEC * 1000 /GPUCYCLE;
printf("gpu_time=%f\n", consume_gpu);
btr.getResult();
bmp.getResult();
t.getResult();

//float consume_gpu = (gpu_t1 + gpu_t2 + gpu_t3) / 3;
printf("***********************END OF GPU*************************\n");
printf("\n");
printf("\n");

 

 

 

 

 

 

/********************************************
/ CPU go second
/*******************************************/

printf("***********************START OF CPU***********************\n");
int col, row;
float distBMP, distBTR, distT;
float*dataMatrix1, *dataMatrix2, *dataMatrix3;
//vector<float> DisBTR;
//vector<float> DisBMP;
//vector<float> DisT;

//BTR

col = getFileColumns(fileNameBTR);
row = getFileRows(fileNameBTR);
int r_btr = thdsPerblock_cal_dis * int((row + thdsPerblock_cal_dis-1) / thdsPerblock_cal_dis);
//printf("row:%d,col:%d\n",row,col);
dataMatrix1 = (float*)malloc(col*r_btr*sizeof(float));
if (dataMatrix1){
//printf("malloc matrix successful!\n");
readMatrixfromTXT<float>(fileNameBTR, col, row, dataMatrix1);
}
cout << "col" << col << endl;

// BMP

col = getFileColumns(fileNameBMP);
row = getFileRows(fileNameBMP);
int r_bmp = thdsPerblock_cal_dis * int((row + thdsPerblock_cal_dis-1) / thdsPerblock_cal_dis);

//printf("row:%d,col:%d\n",row,col);
dataMatrix2 = (float*)malloc(col*r_bmp*sizeof(float));
if (dataMatrix2){
//printf("malloc matrix successful!\n");
readMatrixfromTXT<float>(fileNameBMP, col, row, dataMatrix2);
}


// T

col = getFileColumns(fileNameT);
row = getFileRows(fileNameT);
int r_t = thdsPerblock_cal_dis * int((row + thdsPerblock_cal_dis-1) / thdsPerblock_cal_dis);
//printf("row:%d,col:%d\n",row,col);
dataMatrix3 = (float*)malloc(col*r_t*sizeof(float));
if (dataMatrix3){
//printf("malloc matrix successful!\n");
readMatrixfromTXT<float>(fileNameT, col, row, dataMatrix3);
}

 

clock_t start_cpu = clock();
//printf("start_cpu: %f\n", start_cpu);
for (int cnt = 0; cnt<CPUCYCLE; ++cnt){
distBTR = CalDist(dataMatrix1, r_btr, col);
distBMP = CalDist(dataMatrix2, r_bmp, col);
distT = CalDist(dataMatrix3, r_t, col);
}
clock_t end_cpu = clock();
//printf("end_cpu: %f\n", end_cpu);
clock_t consume_cpu = (end_cpu - start_cpu);


//DisBTR.push_back(distBTR);
printf("The distance of BTR is %f\n", distBTR);
//DisBMP.push_back(distBMP);
printf("The distance of BMP is %f\n", distBMP);
//DisT.push_back(distT);
printf("The distance of T is %f\n", distT);
free(dataMatrix1);
free(dataMatrix2);
free(dataMatrix3);

if (distBMP < distBTR)
{
if (distBMP < distT)
{
printf("The type of picture is BMP\n");
string type = "BMP";
}
else
{
printf("The type of picture is T\n");
string type = "T";
}
}
else
{
if (distBTR < distT)
{
printf("The type of picture is BTR\n");
string type = "BTR";
}
else
{
printf("The type of picture is T\n");
string type = "T";
}
}
printf("cpu_time=%f\n", (double)consume_cpu / CLOCKS_PER_SEC * 1000 / CPUCYCLE);
printf("***********************END OF CPU*************************\n");
printf("cpu_time/gpu_time=%f\n", (double)consume_cpu / CLOCKS_PER_SEC * 1000 / consume_gpu / CPUCYCLE);
//printf("cpu_time/gpu_time=%f\n", (double)totaltime/CLOCKS_PER_SEC*1000 / consume_gpu);

return 0;
}


void BubbleSort(float* pData/*array*/, int count/*the dimension of array*/)
{
float temp;
for (int i = 1; i < 4; i++)
{
for (int j = count - 1; j >= i; j--)
{
if (pData[j] < pData[j - 1])
{
temp = pData[j - 1];
pData[j - 1] = pData[j];
pData[j] = temp;
}
}
}
}

template<typename T>
void readMatrixfromTXT(const char *fileName, const int numColumn, const int numRow, T *matrix)
{
// std::ifstream fin(fileName,std::ifstream::in);
ifstream fin(fileName);
// ifstream fin(fileName.c_str(),ios::in);
if (!fin)
{
cerr << "??????????ò????????????" << endl;
exit(1);
}
string line;
float tmp;
int j = 0;
int i = 0;
int numRow2 = thdsPerblock_cal_dis * int((numRow + thdsPerblock_cal_dis-1) / thdsPerblock_cal_dis);
for (i = 0; i<numRow - 1; i++){
getline(fin, line);
j = 0;
//for(int j=0;j<numColumn;j++){
istringstream istr(line);
while (istr >> tmp){
//matrix[i*numColumn + j] = tmp;
matrix[j*numRow2 + i]=tmp;
++j;
//cout<<tmp<<endl;
}
istr.clear();
line.clear();
}
// cout<<"to add to num%256==0"<<endl;
getline(fin, line);
fin.close();
j = 0;
int rownum2 = numRow - 1;


do
{
j = 0;
istringstream istr(line);
while (istr >> tmp){
matrix[j*numRow2 + rownum2]=tmp;
++j;
}
istr.clear();
++rownum2;
} while (rownum2 % thdsPerblock_cal_dis>0);

for(int i=numRow;i<numRow2;i++)
matrix[i]=1000;
}

int getFileColumns(const char *fileName){
return 14;
}

int getFileRows(const char *fileName){
ifstream fileStream(fileName, ios::in);
string tmp;
int count = 0;
if (fileStream){
while (getline(fileStream, tmp, ‘\n‘)){
count++;
}
}
fileStream.close();
return count;
}

float CalDist(float*mat, int row, int col){
//vector<float>tmp_dist;
float * a= (float*)malloc(sizeof(float)*MULNUM*181);
int count=0;
for (int i = 0; i<row; i++){
if (abs(test1[0] - mat[i]) <= 10){
float sum = 0;
for (int k = 1; k<13; k++){
sum += (test1[k] - mat[i + k*row])*(test1[k] - mat[i + k*row]);
}
sum = sqrt(sum);
//tmp_dist.push_back(sum);
a[count++]=sum;
}
}
//cout<<"cpu sorting..."<<endl;
BubbleSort(a, count);
float dist1 = (a[0] + a[1] + a[2])/3;
free(a);
return dist1;
}

 

CUDA_进行图像特征匹配V2.0

标签:

原文地址:http://www.cnblogs.com/Erdos001/p/4544775.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!