码迷,mamicode.com
首页 > 其他好文 > 详细

LightOJ 1356 Prime Independence (素数 二分图)

时间:2015-06-02 00:28:05      阅读:121      评论:0      收藏:0      [点我收藏+]

标签:

 
Prime Independence
Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Description

A set of integers is called prime independent if none of its member is a prime multiple of another member. An integera is said to be a prime multiple of b if,

a = b x k (where k is a prime [1])

So, 6 is a prime multiple of 2, but 8 is not. And for example, {2, 8, 17} is prime independent but {2, 8, 16} or {3, 6} are not.

Now, given a set of distinct positive integers, calculate the largest prime independent subset.

Input

Input starts with an integer T (≤ 20), denoting the number of test cases.

Each case starts with an integer N (1 ≤ N ≤ 40000) denoting the size of the set. Next line contains N integers separated by a single space. Each of these N integers are distinct and between 1 and 500000 inclusive.

Output

For each case, print the case number and the size of the largest prime independent subset.

Sample Input

3

5

2 4 8 16 32

5

2 3 4 6 9

3

1 2 3

Sample Output

Case 1: 3

Case 2: 3

Case 3: 2


题意:

给出n个数,找出一个最大素数独立子集,如果a=b*一个素数,那么认为a是b的一个素数乘级,如果一个集合不存在一个数是另一个数的素数乘级,那么这就是素数独立子集。


思路:

很像最大独立集,但是这是NP问题,想是否能转化为二分图。

建图思路,每个数要么是奇数个素数的乘级,要么是偶数个,奇数和奇数之间不会有联系,根据这点性质将图划分为二分图,剩下的就是二分图算法了,此题时间卡的紧,必须要用高级一点的二分图算法。


代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#define maxn 40005
using namespace std;

int ans,n,m,num,cnt;
bool app[500005];
int vis[500005],pri[50000],ha[500005];
int a[maxn],head[maxn];
int sta[maxn],top;
bool use[maxn];

int nx,ny;
int cx[maxn],cy[maxn];// cx[i]表示xi对应的匹配 cy[i]表示yi对应的匹配
int distx[maxn],disty[maxn]; // bfs中的第几层
int que[maxn*20];

struct node
{
    int v,next;
}edge[maxn*20];

void addedge(int u,int v)
{
    cnt++;
    edge[cnt].v=v;
    edge[cnt].next=head[u];
    head[u]=cnt;
}
void sieze()
{
    int i,j;
    memset(app,0,sizeof(app));
    for(i=2;i<=500000;i++)
    {
        if((long long)i*i>=500000) break ;
        if(!app[i])
        for(j=i*i;j<=500000;j+=i)
        {
            app[j]=1;
        }
    }
    num=0;
    for(i=2;i<=500000;i++)
    {
        if(app[i]==0) pri[++num]=i;
    }
    memset(ha,0,sizeof(ha));
    int res;
    for(i=2;i<=500000;i++)
    {
        int x=i;
        res=0;
        for(j=1;j<=num&&j*j<=x;j++)
        {
            while(x%pri[j]==0)
            {
                x/=pri[j];
                res++;
            }
        }
        if(x!=1) res++;
        ha[i]=res&1;
    }
    //printf("%d\n",num);
}
void init()
{
    memset(cx,-1,sizeof(cx));
    memset(cy,-1,sizeof(cy));
    memset(head,-1,sizeof(head));
}
bool bfs()
{
    int i,j,k,u,v,h,t;
    bool flag=0;
    memset(distx,0,sizeof(distx));
    memset(disty,0,sizeof(disty));
    t=0;
    for(i=1; i<=nx; i++)
    {
        if(cx[i]==-1) que[t++]=i;
    }
    for(h=0 ; h!=t; h++)
    {
        u=que[h];
        for(k=head[u]; k!=-1; k=edge[k].next)
        {
            v=edge[k].v;
            if(!disty[v])
            {
                disty[v]=distx[u]+1;
                if(cy[v]==-1) flag=1;
                else distx[cy[v]]=disty[v]+1,que[t++]=cy[v];
            }
        }
    }
    return flag;
}
bool dfs(int i)
{
    int j,k;
    for(k=head[i]; k!=-1; k=edge[k].next)
    {
        j=edge[k].v;
        if(disty[j]==distx[i]+1) // 说明j是i的后继结点
        {
            disty[j]=0;  // j被用过了 不能再作为其他点的后继结点了
            if(cy[j]==-1||dfs(cy[j]))
            {
                cx[i]=j,cy[j]=i;
                return 1;
            }
        }
    }
    return 0;
}
void Hopcroft_Karp()
{
    int i,j;
    ans=0;
    while(bfs())
    {
        for(i=1; i<=nx; i++)
        {
            if(cx[i]==-1 && dfs(i)) ans++;
        }
    }
}
void solve()
{
    int i,j;
    int u,v;
    init();
    cnt=0;
    for(i=1;i<=n;i++)
    {
        for(j=1;j<=num;j++)
        {
            if(a[i]*pri[j]>500000) break ;
            v=a[i]*pri[j];
            if(vis[v])
            {
                addedge(vis[a[i]],vis[v]);
                addedge(vis[v],vis[a[i]]);
            }
        }
    }
    Hopcroft_Karp();
}
int main()
{
    int i,j,t,ca=0;
    sieze();
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        int tmp=0;
        memset(vis,0,sizeof(vis));
        for(i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            if(ha[a[i]]) vis[a[i]]=++tmp;
        }
        nx=tmp; ny=n-tmp;
        for(i=1;i<=n;i++)
        {
            if(!ha[a[i]]) vis[a[i]]=++tmp;
        }
        solve();
        printf("Case %d: %d\n",++ca,n-ans);
    }
    return 0;
}


LightOJ 1356 Prime Independence (素数 二分图)

标签:

原文地址:http://blog.csdn.net/tobewhatyouwanttobe/article/details/46318599

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!