码迷,mamicode.com
首页 > 其他好文 > 详细

spark1.0.0 mllib机器学习库使用初探

时间:2014-06-18 15:25:15      阅读:346      评论:0      收藏:0      [点我收藏+]

标签:style   class   blog   code   http   tar   

本文机器学习库使用的部分代码来源于spark1.0.0官方文档

mllib是spark对机器学习算法和应用的实现库,包括分类、回归、聚类、协同过滤、降维等,本文的主要内容为如何使用scala语言创建sbt工程实现机器学习算法,并进行本地和集群的运行。(初学者建议先在RDD交互式模式下按行输入代码,以熟悉scala架构)若想了解SBT等相关信息,可参见这里

1.SVM(linear support vector machine)

  • 新建SimpleSVM目录,在SimpleSVM目录下,创建如下的目录结构:

        bubuko.com,布布扣

  • simple.sbt文件内容如下:
name := "SimpleSVM Project"
version := "1.0"
scalaVersion := "2.10.4"
libraryDependencies += "org.apache.spark" %% "spark-core" % "1.0.0"
libraryDependencies += "org.apache.spark" %% "spark-mllib" % "1.0.0"
resolvers += "Akka Repository" at "http://repo.akka.io/releases/"

PS:由于该应用需要调用mllib,因此要特别注意在libraryDependencies加入spark-mllib,否则会编译不通过的哦。

  • SimpleApp.scala文件内容如下:
import org.apache.spark.SparkContext
import org.apache.spark.mllib.classification.SVMWithSGD
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

object SimpleApp{
  def main(args: Array[String]) {
    val conf = new SparkConf().setAppName("SimpleSVM Application")
    val sc = new SparkContext(conf)   
    val data = MLUtils.loadLibSVMFile(sc, "mllib/test50.txt")

    val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
    val training = splits(0).cache()
    val test = splits(1)
    
    val numIterations = 100
    val model = SVMWithSGD.train(training, numIterations)

    model.clearThreshold()

    val scoreAndLabels = test.map { point =>
      val score = model.predict(point.features)
      (score, point.label)
    }

    val metrics = new BinaryClassificationMetrics(scoreAndLabels)
    val auROC = metrics.areaUnderROC()
    
    println("Area under ROC = " + auROC)
  }
}

PS:由于我们之前在spark配置过程中将hadoop路径配置好了,因此这里的输入路径mllib/test50.txt

实际上为HDFS文件系统中的文件,存储位置与hadoop配置文件core-site.xml中的<name>相关(具体可参见这里,这个地方很容易出错)。因此需要先将test50.txt文件puthdfs上面,另外test50.txt文件为libsvm文件的输入格式,实例如下:

bubuko.com,布布扣

bubuko.com,布布扣

  • 编译:

     cd ~/SimpleSVM

  sbt package     #打包过程,时间可能会比较长,最后会出现[success]XXX

  PS:成功后会生成许多文件 target/scala-2.10/simplesvm-project_2.10-1.0.jar

  • 本地运行:

  spark-submit --class "SimpleApp" --master local target/scala-2.10/simplesvm-project_2.10-1.0.jar

  • 集群运行:

      spark-submit --class "SimpleApp" --master spark://master:7077 target/scala-2.10/simplesvm-project_2.10-1.0.jar

  • 结果:

bubuko.com,布布扣

PS:若希望在算法中添加正则项因子,可将SimpleApp.scala文件修改如下:

import org.apache.spark.mllib.optimization.L1Updater

val svmAlg = new SVMWithSGD()
svmAlg.optimizer.
  setNumIterations(200).
  setRegParam(0.1).
  setUpdater(new L1Updater)
val modelL1 = svmAlg.run(training)

2.逻辑回归(Logistic Regression)

同理,若要实现逻辑回归算法则只需将SimpleApp.scala文件中的SVMWithSGD替换为 LogisticRegressionWithSGD

3. 协同过滤(Collaborative filtering)

文件系统如上所示,协同过滤算法可以将只需将SimpleApp.scala文件进行如下修改:

import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.Rating
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

object SimpleApp{
  def main(args: Array[String]) {
    val conf = new SparkConf().setAppName("SimpleCF Application")
    val sc = new SparkContext(conf)
    val data = sc.textFile("mllib/test.data")

    val ratings = data.map(_.split(,) match { case Array(user, item, rate) =>
        Rating(user.toInt, item.toInt, rate.toDouble)
       })
    
    val rank = 10
    val numIterations = 5
    val model = ALS.train(ratings, rank, numIterations, 0.01)

    val usersProducts = ratings.map { case Rating(user, product, rate) =>
       (user, product)
    }
    val predictions = 
       model.predict(usersProducts).map { case Rating(user, product, rate) => 
          ((user, product), rate)
     }
    val ratesAndPreds = ratings.map { case Rating(user, product, rate) => 
       ((user, product), rate)
    }.join(predictions)
    val MSE = ratesAndPreds.map { case ((user, product), (r1, r2)) => 
       val err = (r1 - r2)
       err * err
    }.mean()
    println("Mean Squared Error = " + MSE)
  }
}

PS:同理,mllib/test.data存储于HDFS文件系统,为示例数据:

bubuko.com,布布扣

  • 本地运行:

  spark-submit --class "SimpleApp" --master local target/scala-2.10/simplecf-project_2.10-1.0.jar

  • 集群运行:

      spark-submit --class "SimpleApp" --master spark://master:7077 target/scala-2.10/simplecf-project_2.10-1.0.jar

  • 结果:

bubuko.com,布布扣

PS:可以加入alpha参数控制:

val alpha = 0.01
val model = ALS.trainImplicit(ratings, rank, numIterations, alpha)
同理聚类算法、降维方法代码可参见这里

本文为原创博客,若转载请注明出处。

 

spark1.0.0 mllib机器学习库使用初探,布布扣,bubuko.com

spark1.0.0 mllib机器学习库使用初探

标签:style   class   blog   code   http   tar   

原文地址:http://www.cnblogs.com/tec-vegetables/p/3791398.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!