码迷,mamicode.com
首页 > 其他好文 > 详细

Project Euler:Problem 27 Quadratic primes

时间:2015-06-02 11:16:49      阅读:139      评论:0      收藏:0      [点我收藏+]

标签:c++   project euler   

Euler discovered the remarkable quadratic formula:

n2 + n + 41

It turns out that the formula will produce 40 primes for the consecutive values n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible by 41, and certainly when n = 41, 412 + 41 + 41 is clearly divisible by 41.

The incredible formula  n2 ? 79n + 1601 was discovered, which produces 80 primes for the consecutive values n = 0 to 79. The product of the coefficients, ?79 and 1601, is ?126479.

Considering quadratics of the form:

n2 + an + b, where |a| < 1000 and |b| < 1000

where |n| is the modulus/absolute value of n
e.g. |11| = 11 and |?4| = 4

Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n = 0.


a,b分别从[-999,999]之间取值,找到满足条件的a,b使得n按顺序取0,1,2,3,4,...的情况下连续生成的质数序列最长。


#include <iostream>
using namespace std;

bool prim(int a)
{
	if (a < 2)
		return false;
	for (int i = 2; i*i <= a; i++)
	{
		if (a%i == 0)
			return false;
	}
	return true;

}

int main()
{
	int maxcount = 0;
	int res = 0;
	for (int a = -999; a <= 999; a++)
	{
		for (int b = -999; b <= 999; b++)
		{
			int n = 0;
			while (true)
			{
				int tmp = n*n + a*n + b;
				if (prim(tmp))
					n++;
				else
					break;
			}
			if (n > maxcount)
			{
				maxcount = n;
				res = a*b;
			}
		}
	}
	cout << res << endl;
	system("pause");
	return 0;
}


Project Euler:Problem 27 Quadratic primes

标签:c++   project euler   

原文地址:http://blog.csdn.net/youb11/article/details/46324639

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!