码迷,mamicode.com
首页 > 其他好文 > 详细

GraphMatrix::图的定义

时间:2015-06-02 15:20:51      阅读:551      评论:0      收藏:0      [点我收藏+]

标签:   定义   graphmatri   

图的抽象基类:

typedef enum { UNDISCOVERED, DISCOVERED, VISITED } VStatus; //顶点状态
typedef enum { UNDETERMINED, TREE, CROSS, FORWARD, BACKWARD } EStatus; //边状态

template <typename Tv, typename Te> //顶点类型、边类型
class Graph { //图Graph模板类
private:
   void reset() { //所有顶点、边的辅助信息复位
      for (int i = 0; i < n; i++) { //所有顶点的
         status(i) = UNDISCOVERED; dTime(i) = fTime(i) = -1; //状态,时间标签
         parent(i) = -1; priority(i) = INT_MAX; //(在遍历树中的)父节点,优先级数
         for (int j = 0; j < n; j++) //所有边的
            if (exists(i, j)) status(i, j) = UNDETERMINED; //状态
      }
   }
   void BFS(int, int&); //(连通域)广度优先搜索算法
   void DFS(int, int&); //(连通域)深度优先搜索算法
   void BCC(int, int&, Stack<int>&); //(连通域)基于DFS的双连通分量分解算法
   bool TSort(int, int&, Stack<Tv>*); //(连通域)基于DFS的拓扑排序算法
   template <typename PU> void PFS(int, PU); //(连通域)优先级搜索框架
public:
// 顶点
   int n; //顶点总数
   virtual int insert(Tv const &) = 0; //插入顶点,返回编号
   virtual Tv remove(int) = 0; //删除顶点及其关联边,返回该顶点信息
   virtual Tv& vertex(int) = 0; //顶点v的数据(该顶点的确存在)
   virtual int inDegree(int) = 0; //顶点v的入度(该顶点的确存在)
   virtual int outDegree(int) = 0; //顶点v的出度(该顶点的确存在)
   virtual int firstNbr(int) = 0; //顶点v的首个邻接顶点
   virtual int nextNbr(int, int) = 0; //顶点v的(相对于顶点j的)下一邻接顶点
   virtual VStatus& status(int) = 0; //顶点v的状态
   virtual int& dTime(int) = 0; //顶点v的时间标签dTime
   virtual int& fTime(int) = 0; //顶点v的时间标签fTime
   virtual int& parent(int) = 0; //顶点v在遍历树中的父亲
   virtual int& priority(int) = 0; //顶点v在遍历树中的优先级数
// 边:这里约定,无向边均统一转化为方向互逆的一对有向边,从而将无向图视作有向图的特例
   int e; //边总数
   virtual bool exists(int, int) = 0; //边(v, u)是否存在
   virtual void insert(Te const &, int, int, int) = 0; //在顶点v和u之间插入权重为w的边e
   virtual Te remove(int, int) = 0; //删除顶点v和u之间的边e,返回该边信息
   virtual EStatus& status(int, int) = 0; //边(v, u)的状态
   virtual Te& edge(int, int) = 0; //边(v, u)的数据(该边的确存在)
   virtual int& weight(int, int) = 0; //边(v, u)的权重
// 算法
   void bfs(int); //广度优先搜索算法
   void dfs(int); //深度优先搜索算法
   void bcc(int); //基于DFS的双连通分量分解算法
   Stack<Tv>* tSort(int); //基于DFS的拓扑排序算法
   void prim(int); //最小支撑树Prim算法
   void dijkstra(int); //最短路径Dijkstra算法
   template <typename PU> void pfs(int, PU); //优先级搜索框架
};

#include "Graph_implementation.h"

图的定义:

#include "../Vector/Vector.h" //引入向量
#include "../Graph/Graph.h" //引入图ADT

template <typename Tv> struct Vertex { //顶点对象(为简化起见,并未严格封装)
   Tv data; int inDegree, outDegree; VStatus status; //数据、出入度数、状态
   int dTime, fTime; //时间标签
   int parent; int priority; //在遍历树中的父节点、优先级数
   Vertex(Tv const & d = (Tv) 0) : //构造新顶点
   data(d), inDegree(0), outDegree(0), status(UNDISCOVERED),
      dTime(-1), fTime(-1), parent(-1), priority(INT_MAX) {} //暂不考虑权重溢出
};

template <typename Te> struct Edge { //边对象(为简化起见,并未严格封装)
   Te data; int weight; EStatus status; //数据、权重、状态
   Edge(Te const & d, int w) : data(d), weight(w), status(UNDETERMINED) {} //构造新边
};

template <typename Tv, typename Te> //顶点类型、边类型
class GraphMatrix : public Graph<Tv, Te> { //基于向量,以邻接矩阵形式实现的图
private:
   Vector<Vertex<Tv>> V; //顶点集(向量)
   Vector<Vector<Edge<Te>*>> E; //边集(邻接矩阵)
public:
   GraphMatrix() { n = e = 0; } //构造
   ~GraphMatrix() { //析构
      for (int j = 0; j < n; j++)  //所有动态创建的
         for (int k = 0; k < n; k++) //边记录
            delete E[j][k]; //逐条清除
   }
// 顶点的基本操作:查询第i个顶点(0 <= i < n)
   virtual Tv& vertex(int i) { return V[i].data; } //数据
   virtual int inDegree(int i) { return V[i].inDegree; } //入度
   virtual int outDegree(int i) { return V[i].outDegree; } //出度
   virtual int firstNbr(int i) { return nextNbr(i, n); } //首个邻接顶点
   virtual int nextNbr(int i, int j) //相对于顶点j的下一邻接顶点
   { while ((-1 < j) && (!exists(i, --j))); return j; } //逆向线性试探(改用邻接表可提高效率)
   virtual VStatus& status(int i) { return V[i].status; } //状态
   virtual int& dTime(int i) { return V[i].dTime; } //时间标签dTime
   virtual int& fTime(int i) { return V[i].fTime; } //时间标签fTime
   virtual int& parent(int i) { return V[i].parent; } //在遍历树中的父亲
   virtual int& priority(int i) { return V[i].priority; } //在遍历树中的优先级数
// 顶点的动态操作
   virtual int insert(Tv const & vertex) { //插入顶点,返回编号
      for (int j = 0; j < n; j++) E[j].insert(NULL); n++; //各顶点预留一条潜在的关联边
      E.insert(Vector<Edge<Te>*>(n, n, (Edge<Te>*) NULL)); //创建新顶点对应的边向量
      return V.insert(Vertex<Tv>(vertex)); //顶点向量增加一个顶点
   }
   virtual Tv remove(int i) { //删除第i个顶点及其关联边(0 <= i < n)
      for (int j = 0; j < n; j++) //所有出边
         if (exists(i, j)) { delete E[i][j]; V[j].inDegree--; } //逐条删除
      E.remove(i); n--; //删除第i行
      for (int j = 0; j < n; j++) //所有出边
         if (exists(j, i)) { delete E[j].remove(i); V[j].outDegree--; } //逐条删除
      Tv vBak = vertex(i); V.remove(i); //删除顶点i
      return vBak; //返回被删除顶点的信息
   }
// 边的确认操作
   virtual bool exists(int i, int j) //边(i, j)是否存在
   { return (0 <= i) && (i < n) && (0 <= j) && (j < n) && E[i][j] != NULL; }
// 边的基本操作:查询顶点i与j之间的联边(0 <= i, j < n且exists(i, j))
   virtual EStatus& status(int i, int j) { return E[i][j]->status; } //边(i, j)的状态
   virtual Te& edge(int i, int j) { return E[i][j]->data; } //边(i, j)的数据
   virtual int& weight(int i, int j) { return E[i][j]->weight; } //边(i, j)的权重
// 边的动态操作
   virtual void insert(Te const & edge, int w, int i, int j) { //插入权重为w的边e = (i, j)
      if (exists(i, j)) return; //确保该边尚不存在
      E[i][j] = new Edge<Te>(edge, w); //创建新边
      e++; V[i].outDegree++; V[j].inDegree++; //更新边计数与关联顶点的度数
   }
   virtual Te remove(int i, int j) { //删除顶点i和j之间的联边(exists(i, j))
      Te eBak = edge(i, j); delete E[i][j]; E[i][j] = NULL; //备份后删除边记录
      e--; V[i].outDegree--; V[j].inDegree--; //更新边计数与关联顶点的度数
      return eBak; //返回被删除边的信息
   }
};

GraphMatrix::图的定义

标签:   定义   graphmatri   

原文地址:http://blog.csdn.net/ganxiang2011/article/details/46328051

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!