标签:pat
1 边界和湖心小岛分别算一个节点,连接所有距离小于D的鳄鱼,时间复杂度O(N2)
2 判断每个连通图的节点中是否包含边界和湖心小岛,是则Yes否则No
3 冗长混乱的函数参数
#include <stdio.h> #include <malloc.h> #include <queue> #include <math.h> using namespace std; struct Coordinate { float x; float y; }; bool operator==(Coordinate& a, Coordinate& b) { return a.x == b.x && a.y == b.y; } float DistanceOfPoints(const Coordinate& a, const Coordinate& b) { return sqrtf(pow(a.x - b.x, 2) + pow(a.y - b.y, 2)); } void JudgePosition(const int& D, Coordinate* crocodile, const int& i, bool* isCloseToEdge, bool* isCloseToCenter) { // 靠近湖岸 if (crocodile[i].x >= 50 - D || crocodile[i].x <= -50 + D || crocodile[i].y >= 50 - D || crocodile[i].y <= -50 + D) { isCloseToEdge[i] = true; } else { isCloseToEdge[i] = false; } // 靠近湖心小岛 if ( sqrtf(pow(crocodile[i].x, 2) + pow(crocodile[i].y, 2)) <= 7.5 + D) { isCloseToCenter[i] = true; } else { isCloseToCenter[i] = false; } } bool IsCloseToEdge(const int& D, const Coordinate& crocodile) { return (crocodile.x >= 50 - D || crocodile.x <= -50 + D || crocodile.y >= 50 - D || crocodile.y <= -50 + D); } bool IsCloseToCenter(const int& D, const Coordinate& crocodile) { return (sqrtf(pow(crocodile.x, 2) + pow(crocodile.y, 2)) <= 7.5 + D); } int* CreateMatrixGraph(const int& N) { int* graph = (int*) malloc(sizeof(int) * N * N); for (int i = 0;i < N * N; i++) { graph[i] = 0; } return graph; } bool IsMatrixConnected(const int& a, const int& b, int* graph, const int& N) { if (a == b) { return false; } return (graph[a * N + b]); } void MatrixConnect(const int& a, const int& b, int* graph, const int& N) { if (IsMatrixConnected(a, b, graph, N)) { printf("ERROR : %d AND %d ALREADY CONNECTED\n", a, b); return; } if (a == b) { printf("ERROR : THE SAME VERTICE\n"); return; } graph[a * N + b] = 1; graph[b * N + a] = 1; } void GetAdjoinVertice(const int& vertice, int* graph, int* adjoinVertice, int N) { int currentIndex = 0; for (int i = 0; i < N; i++) { if (graph[vertice * N + i] == 1) { adjoinVertice[currentIndex++] = i; } } } void DFS(int* graph, const int& vertice, bool* isVisited, int N, bool* result) { //printf("%d ", vertice); isVisited[vertice] = true; if (vertice == N - 2) { result[0] = true; } if (vertice == N - 1) { result[1] = true; } int* adjoinVertice = (int*) malloc(sizeof(int) * N); for (int i = 0; i < N; i++) { adjoinVertice[i] = -1; } GetAdjoinVertice(vertice, graph, adjoinVertice, N); int i = 0; while (adjoinVertice[i] != -1) { if (!isVisited[adjoinVertice[i]] /*&& DistanceOfPoints(crocodile[vertice], crocodile[i]) <= D*/) { DFS(graph, adjoinVertice[i], isVisited, N, result); } i++; } free(adjoinVertice); } void BFS(int* graph, int vertice, bool* isVisited, int N) { queue<int> t; t.push(vertice); isVisited[vertice] = true; while (!t.empty()) { int currentVertice = t.front(); t.pop(); printf("%d ", currentVertice); int* adjoinVertice = (int*) malloc(sizeof(int) * N); for (int i = 0; i < N; i++) { adjoinVertice[i] = -1; } GetAdjoinVertice(currentVertice, graph, adjoinVertice, N); int i = 0; while (adjoinVertice[i] != -1) { if (!isVisited[adjoinVertice[i]]) { t.push(adjoinVertice[i]); isVisited[adjoinVertice[i]] = true; } i++; } } } bool MatrixComponentsSearch(int* graph, bool* isVisited, int N, bool* result, int function = 1) { for (int i = 0; i < N; i++) { if (!isVisited[i]) { if (function == 1) { //printf("{ "); DFS(graph, i, isVisited, N, result); if (result[0] == true && result[1] == true) { return true; } result[0] = false; result[1] = false; } else { //printf("{ "); BFS(graph, i, isVisited, N); //printf("}\n"); } } } return false; } int main(void) { int N; int D; scanf("%d %d", &N, &D); int nodeCount = N + 2; Coordinate* crocodile = (Coordinate*) malloc(sizeof(Coordinate) * nodeCount); bool* isVisited = (bool*) malloc(sizeof(bool) * N); for (int i = 0; i < N; i++) { scanf("%f %f", &crocodile[i].x, &crocodile[i].y); } crocodile[N].x = 0; crocodile[N].y = 0; crocodile[N + 1].x = -1; crocodile[N + 1].y = -1; // 一共N个鳄鱼,N是湖心小岛,N+1是岸边 int* graph = CreateMatrixGraph(N + 2); // 连接距离小于D的鳄鱼 for (int i = 0; i < N; i++) { if (IsCloseToCenter(D, crocodile[i])) { MatrixConnect(i, N, graph, nodeCount); } if (IsCloseToEdge(D, crocodile[i])) { MatrixConnect(i, N + 1, graph, nodeCount); } for (int j = i + 1; j < N; j++) { if (DistanceOfPoints(crocodile[i], crocodile[j]) <= D) { MatrixConnect(i, j, graph, nodeCount); } } } bool result[2]; result[0] = false; result[1] = false; if (MatrixComponentsSearch(graph, isVisited, nodeCount, result)) { printf("Yes"); } else { printf("No"); } return 0; }
05-图2. Saving James Bond - Easy Version (25)
标签:pat
原文地址:http://blog.csdn.net/qq_19672579/article/details/46337745