标签:uva 11584 partitioning by pali 线性dp
// uva 11584 Partitioning by Palindromes 线性dp // // 题目意思是将一个字符串划分成尽量少的回文串 // // f[i]表示前i个字符能化成最少的回文串的数目 // // f[i] = min(f[i],f[j-1] + 1(j到i是回文串)) // // 这道题还是挺简单的,继续练 #include <algorithm> #include <bitset> #include <cassert> #include <cctype> #include <cfloat> #include <climits> #include <cmath> #include <complex> #include <cstdio> #include <cstdlib> #include <cstring> #include <ctime> #include <deque> #include <functional> #include <iostream> #include <list> #include <map> #include <numeric> #include <queue> #include <set> #include <stack> #include <vector> #define ceil(a,b) (((a)+(b)-1)/(b)) #define endl '\n' #define gcd __gcd #define highBit(x) (1ULL<<(63-__builtin_clzll(x))) #define popCount __builtin_popcountll typedef long long ll; using namespace std; const int MOD = 1000000007; const long double PI = acos(-1.L); template<class T> inline T lcm(const T& a, const T& b) { return a/gcd(a, b)*b; } template<class T> inline T lowBit(const T& x) { return x&-x; } template<class T> inline T maximize(T& a, const T& b) { return a=a<b?b:a; } template<class T> inline T minimize(T& a, const T& b) { return a=a<b?a:b; } const int maxn = 1008; char s[maxn]; int f[maxn]; bool vis[maxn][maxn]; int n; bool ok(int x,int y){ while(x<y){ if (s[x]==s[y]){ x++; y--; }else { return false; } } return true; } void init(){ memset(vis,0,sizeof(vis)); scanf("%s",s+1); n = strlen(s+1); f[0]=0; for (int i=1;i<=n;i++) f[i] = i; for (int i=1;i<=n;i++) for (int j=i;j<=n;j++){ if (ok(i,j)){ vis[i][j]=1; } } for (int i=1;i<=n;i++) for (int j=1;j<=i;j++){ if (vis[j][i]){ f[i] = min(f[i],f[j-1]+1); } } printf("%d\n",f[n]); } int main() { int t; //freopen("G:\\Code\\1.txt","r",stdin); scanf("%d",&t); while(t--){ init(); } return 0; }
uva 11584 Partitioning by Palindromes 线性dp
标签:uva 11584 partitioning by pali 线性dp
原文地址:http://blog.csdn.net/timelimite/article/details/46351639