又因为Sin^2C+cos^2C=1;将余弦定理和正弦定理带入此式可得出外接圆的半径;
#include<iostream>
#include<cmath>
#include<iomanip>
using namespace std;
#define PI 3.141592653589793
double DI(double x1,double y1,double x2,double y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
int main()
{
double x1,y1,x2,y2,x3,y3,ans,r,s,p;
while(cin>>x1>>y1>>x2>>y2>>x3>>y3)
{
double a,b,c;
a=DI(x1,y1,x2,y2);
b=DI(x1,y1,x3,y3);
c=DI(x2,y2,x3,y3);
p=(a+b+c)/2.0;
s=sqrt(p*(p-a)*(p-b)*(p-c));//海伦公式求三角形面积
r=(a*b*c)/(4.0*s);//利用三角形面积和外接圆半径
ans=2*PI*r;
cout<<setiosflags(ios::fixed)<<setprecision(2)<<ans<<endl;
}
return 0;
} 原文地址:http://blog.csdn.net/nk_test/article/details/46369279