码迷,mamicode.com
首页 > 其他好文 > 详细

图的创建,深搜,广搜(基于临接表实现)

时间:2015-06-05 10:19:31      阅读:110      评论:0      收藏:0      [点我收藏+]

标签:有向图   邻接表   深度搜索   广度搜索   数据结构   

#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <queue>
using namespace std;

#define MaxVertexNum 100			//最大顶点数
typedef enum{DG,UDG,DN,UDN} GraphKind; 	//图的种类
typedef int InfoType; 
typedef char VertexType; 
 
typedef struct ArcNode {
	 int adjvex;    				//邻接点域,存储该弧指向顶点的下标  
	 struct ArcNode *next;			//指向下一条弧的指针 
	 InfoType* info;				//该弧相关信息的指针 
}ArcNode;

typedef struct VertexNode {
	VertexType data;				//数据域 
	ArcNode *firstArc;				//指向第一条依附该顶点的弧的指针 
}VertexNode,AdjList[MaxVertexNum];

typedef struct {
	AdjList vertices;				//顶点集		
	int vexnum,arcnum; 				//图的顶点数和弧数
	GraphKind kind;
}ALGraph;		//Adjacency List
bool visited[MaxVertexNum];   //设访问标志数组,供遍历时使用

void CreateALGraph(ALGraph *G);
int LocateVex(ALGraph *G,VertexType v);
void Display(ALGraph *G);
void DFS(ALGraph *G,int v);
void DFSTraver(ALGraph *G);
void BFSTraver(ALGraph *G);

int main()
{
	ALGraph G;
	CreateALGraph(&G); 
    Display(&G);
	DFSTraver(&G);
	BFSTraver(&G);
	return 0;
}

//求顶点位置函数
int LocateVex(ALGraph *G,VertexType v)
{
    int i;
    for(i=0;i<G->vexnum;i++)
    {
        if(G->vertices[i].data == v)
            return i;
    }
    return -1;
}

/*
(a,b,1)
(a,c,1)
(b,d,1)
(c,d,1)
(d,a,1)
*/

//以又向带权图为例(DN)
void CreateALGraph(ALGraph *G)
{
    VertexType v1,v2;
    int weight;
    ArcNode *Arc;
    //1.确定顶点数和弧数
    printf("请输入顶点数和边数:");
    scanf("%d %d",&G->vexnum,&G->arcnum);

    //2.确定各个顶点的值
    printf("请输入各顶点的数据:");     
    for(int i=0;i<G->vexnum;i++){
        scanf(" %c",&(G->vertices[i].data));
        G->vertices[i].firstArc = NULL;     //顶点的边表设为空
    }

    printf("请依次输入n组边对应的两个顶点以及权值,输入格式为(a,b,c):\n");
    for(int k=0;k<G->arcnum;k++) {
        scanf(" (%c,%c,%d)",&v1,&v2,&weight);
            //printf("%c %c %d\n",v1,v2,weight);

        int i = LocateVex(G,v1);
        int j = LocateVex(G,v2);  
        Arc = (ArcNode*)malloc(sizeof(ArcNode));
        Arc->adjvex = j;
        Arc->info = (int *) malloc(sizeof(int));  
        *Arc->info = weight;
        Arc->next = G->vertices[i].firstArc;    //头插        
        G->vertices[i].firstArc = Arc;

        //若是无向图,还要再生成一个节点表示<V2,v1>
    }
}

void Display(ALGraph *G)
{
    ArcNode *p;
    printf("编号,  顶点,   相邻边的顶点\n");
    for(int i=0;i<G->vexnum;i++)
    {
        printf("%4d %4c",i,G->vertices[i].data);
        for(p=G->vertices[i].firstArc;p!=NULL;p=p->next)
            printf("%8d",p->adjvex);
        printf("\n");
    }
}

void Visit(ALGraph *G,int v)
{
    printf("%c ",G->vertices[v].data);
}
 
//深度优先遍历       
void DFS(ALGraph *G,int v)
{
    Visit(G,v);
    visited[v] = true;
    ArcNode *p = G->vertices[v].firstArc;
	while(p)
	{
		if(!visited[p->adjvex])
		{
			DFS(G,p->adjvex);			
		}p = p->next;
	}
}


void DFSTraver(ALGraph *G)
{

    for (int i = 0; i < G->vexnum; i++)
    {
        visited[i] = false;
    }
	printf("DFSTraver:\n");
	for (int i = 0; i < G->vexnum; i++)
	{
		if(!visited[i])
			DFS(G,i);
	}
		
}

//广度度优先遍历  
void BFS(ALGraph *G,int v)
{
	Visit(G,v);
	visited[v] = true;
	queue<int> q;
	q.push(v);
	while(!q.empty())
	{
		int w;
		w = q.front();
		q.pop(); //队头元素出队
        ArcNode *p = G->vertices[w].firstArc;
        while(p!=NULL)
        {
            if(!visited[p->adjvex])
            {
                Visit(G,p->adjvex);
                visited[p->adjvex] = true;
                q.push(p->adjvex);
            }
            p = p->next;    
        }

	}
}

void BFSTraver(ALGraph *G)
{
	printf("\nBFSTraver:\n");
    for (int i = 0; i < G->vexnum; i++)
    {
        visited[i] = false;
    };
	for (int i = 0; i < G->vexnum; i++)
	{
		if(!visited[i])
			BFS(G,i);
	}
		
}

技术分享

图的创建,深搜,广搜(基于临接表实现)

标签:有向图   邻接表   深度搜索   广度搜索   数据结构   

原文地址:http://blog.csdn.net/huolang_vip/article/details/46368503

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!