标签:hadoop mapreduce java 商品推荐 好友推荐
1,商城:是单商家,多买家的商城系统。数据库是mysql,语言java。
2,sqoop1.9.33:在mysql和hadoop中交换数据。
3,hadoop2.2.0:这里用于练习的是伪分布模式。
4,完成内容:喜欢该商品的人还喜欢,相同购物喜好的好友推荐。
步骤:
1,通过sqoop从mysql中将 “用户收藏商品” (这里用的是用户收藏商品信息表作为推荐系统业务上的依据,业务依据可以很复杂。这里主要介绍推荐系统的基本原理,所以推荐依据很简单)的表数据导入到hdfs中。
2,用MapReduce实现推荐算法。
3,通过sqoop将推荐系统的结果写回mysql。
4,java商城通过推荐系统的数据实现<喜欢该商品的人还喜欢,相同购物喜好的好友推荐。>两个功能。
实现:
1,
推荐系统的数据来源:
左边是用户,右边是商品。用户每收藏一个商品都会生成一条这样的信息,<喜欢该商品的人还喜欢,相同购物喜好的好友推荐。>的数据来源都是这张表。
sqoop导入数据,这里用的sqoop1.9.33。sqoop1.9.33的资料很少,会出现一些错误,搜索不到的可以发到我的邮箱keepmovingzx@163.com。
创建链接信息
这个比较简单
创建job
信息填对就可以了
导入数据执行 start job --jid 上面创建成功后返回的ID
导入成功后的数据
2,eclipse开发MapReduce程序
ShopxxProductRecommend<喜欢该商品的人还喜欢>
整个项目分两部,一,以用户对商品进行分组,二,求出商品的同现矩阵。
一
第1大步的数据为输入参数对商品进行分组
输出参数:
二,以第一步的输出数据为输入求商品的同现矩阵
输出数据
第一列数据为当前商品,第二列为与它相似的商品,第三列为相似率(越高越相似)。
整个过程就完了,下面
package xian.zhang.common; import java.util.regex.Pattern; public class Util { public static final Pattern DELIMITER = Pattern.compile("[\t,]"); }
package xian.zhang.core; import java.io.IOException; import java.util.Iterator; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * 将输入数据 userid1,product1 userid1,product2 userid1,product3 * 合并成 userid1 product1,product2,product3输出 * @author zx * */ public class CombinProductInUser { public static class CombinProductMapper extends Mapper<LongWritable, Text, IntWritable, Text>{ @Override protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException { String[] items = value.toString().split(","); context.write(new IntWritable(Integer.parseInt(items[0])), new Text(items[1])); } } public static class CombinProductReducer extends Reducer<IntWritable, Text, IntWritable, Text>{ @Override protected void reduce(IntWritable key, Iterable<Text> values,Context context) throws IOException, InterruptedException { StringBuffer sb = new StringBuffer(); Iterator<Text> it = values.iterator(); sb.append(it.next().toString()); while(it.hasNext()){ sb.append(",").append(it.next().toString()); } context.write(key, new Text(sb.toString())); } } @SuppressWarnings("deprecation") public static boolean run(Path inPath,Path outPath) throws IOException, ClassNotFoundException, InterruptedException{ Configuration conf = new Configuration(); Job job = new Job(conf,"CombinProductInUser"); job.setJarByClass(CombinProductInUser.class); job.setMapperClass(CombinProductMapper.class); job.setReducerClass(CombinProductReducer.class); job.setOutputKeyClass(IntWritable.class); job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job, inPath); FileOutputFormat.setOutputPath(job, outPath); return job.waitForCompletion(true); } }
package xian.zhang.core; import java.io.IOException; import java.util.Iterator; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * 将输入数据 userid1,product1 userid1,product2 userid1,product3 * 合并成 userid1 product1,product2,product3输出 * @author zx * */ public class CombinProductInUser { public static class CombinProductMapper extends Mapper<LongWritable, Text, IntWritable, Text>{ @Override protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException { String[] items = value.toString().split(","); context.write(new IntWritable(Integer.parseInt(items[0])), new Text(items[1])); } } public static class CombinProductReducer extends Reducer<IntWritable, Text, IntWritable, Text>{ @Override protected void reduce(IntWritable key, Iterable<Text> values,Context context) throws IOException, InterruptedException { StringBuffer sb = new StringBuffer(); Iterator<Text> it = values.iterator(); sb.append(it.next().toString()); while(it.hasNext()){ sb.append(",").append(it.next().toString()); } context.write(key, new Text(sb.toString())); } } @SuppressWarnings("deprecation") public static boolean run(Path inPath,Path outPath) throws IOException, ClassNotFoundException, InterruptedException{ Configuration conf = new Configuration(); Job job = new Job(conf,"CombinProductInUser"); job.setJarByClass(CombinProductInUser.class); job.setMapperClass(CombinProductMapper.class); job.setReducerClass(CombinProductReducer.class); job.setOutputKeyClass(IntWritable.class); job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job, inPath); FileOutputFormat.setOutputPath(job, outPath); return job.waitForCompletion(true); } }
package xian.zhang.core; import java.io.IOException; import org.apache.hadoop.fs.Path; public class Main { public static void main(String[] args) throws ClassNotFoundException, IOException, InterruptedException { if(args.length < 2){ throw new IllegalArgumentException("要有两个参数,数据输入的路径和输出路径"); } Path inPath1 = new Path(args[0]); Path outPath1 = new Path(inPath1.getParent()+"/CombinProduct"); Path inPath2 = outPath1; Path outPath2 = new Path(args[1]); if(CombinProductInUser.run(inPath1, outPath1)){ System.exit(ProductCo_occurrenceMatrix.run(inPath2, outPath2)?0:1); } } }
ShopxxUserRecommend<相同购物喜好的好友推荐>
整个项目分两部,一,以商品对用户进行分组,二,求出用户的同现矩阵。
原理和ShopxxProductRecommend一样
下面附上代码
package xian.zhang.common; import java.util.regex.Pattern; public class Util { public static final Pattern DELIMITER = Pattern.compile("[\t,]"); }
package xian.zhang.core; import java.io.IOException; import java.util.Iterator; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * 将输入数据 userid1,product1 userid1,product2 userid1,product3 * 合并成 productid1 user1,user2,user3输出 * @author zx * */ public class CombinUserInProduct { public static class CombinUserMapper extends Mapper<LongWritable, Text, IntWritable, Text>{ @Override protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException { String[] items = value.toString().split(","); context.write(new IntWritable(Integer.parseInt(items[1])), new Text(items[0])); } } public static class CombinUserReducer extends Reducer<IntWritable, Text, IntWritable, Text>{ @Override protected void reduce(IntWritable key, Iterable<Text> values,Context context) throws IOException, InterruptedException { StringBuffer sb = new StringBuffer(); Iterator<Text> it = values.iterator(); sb.append(it.next().toString()); while(it.hasNext()){ sb.append(",").append(it.next().toString()); } context.write(key, new Text(sb.toString())); } } @SuppressWarnings("deprecation") public static boolean run(Path inPath,Path outPath) throws IOException, ClassNotFoundException, InterruptedException{ Configuration conf = new Configuration(); Job job = new Job(conf,"CombinUserInProduct"); job.setJarByClass(CombinUserInProduct.class); job.setMapperClass(CombinUserMapper.class); job.setReducerClass(CombinUserReducer.class); job.setOutputKeyClass(IntWritable.class); job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job, inPath); FileOutputFormat.setOutputPath(job, outPath); return job.waitForCompletion(true); } }
package xian.zhang.core; import java.io.IOException; import java.util.Iterator; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import xian.zhang.common.Util; /** * 用户的同先矩阵 * @author zx * */ public class UserCo_occurrenceMatrix { public static class Co_occurrenceMapper extends Mapper<LongWritable, Text, Text, IntWritable>{ IntWritable one = new IntWritable(1); @Override protected void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException { String[] products = Util.DELIMITER.split(value.toString()); for(int i=1;i<products.length;i++){ for(int j=1;j<products.length;j++){ if(i != j){ context.write(new Text(products[i] + ":" + products[j]), one); } } } } } public static class Co_occurrenceReducer extends Reducer<Text, IntWritable, NullWritable, Text>{ NullWritable nullKey =NullWritable.get(); @Override protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException { int sum = 0; Iterator<IntWritable> it = values.iterator(); while(it.hasNext()){ sum += it.next().get(); } context.write(nullKey, new Text(key.toString().replace(":", ",") + "," + sum)); } } @SuppressWarnings("deprecation") public static boolean run(Path inPath,Path outPath) throws IOException, ClassNotFoundException, InterruptedException{ Configuration conf = new Configuration(); Job job = new Job(conf,"UserCo_occurrenceMatrix"); job.setJarByClass(UserCo_occurrenceMatrix.class); job.setMapperClass(Co_occurrenceMapper.class); job.setReducerClass(Co_occurrenceReducer.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); job.setOutputKeyClass(NullWritable.class); job.setOutputKeyClass(Text.class); FileInputFormat.addInputPath(job, inPath); FileOutputFormat.setOutputPath(job, outPath); return job.waitForCompletion(true); } }
package xian.zhang.core; import java.io.IOException; import org.apache.hadoop.fs.Path; public class Main { public static void main(String[] args) throws ClassNotFoundException, IOException, InterruptedException { if(args.length < 2){ throw new IllegalArgumentException("要有两个参数,数据输入的路径和输出路径"); } Path inPath1 = new Path(args[0]); Path outPath1 = new Path(inPath1.getParent()+"/CombinUser"); Path inPath2 = outPath1; Path outPath2 = new Path(args[1]); if(CombinUserInProduct.run(inPath1, outPath1)){ System.exit(UserCo_occurrenceMatrix.run(inPath2, outPath2)?0:1); } } }
git@github.com:chaoku/ShopxxProductRecommend.git
hadoop实现购物商城推荐系统,布布扣,bubuko.com
标签:hadoop mapreduce java 商品推荐 好友推荐
原文地址:http://blog.csdn.net/ilovezhangxian/article/details/31809635