码迷,mamicode.com
首页 > 其他好文 > 详细

POJ 3070 Fibonacci(矩阵快速幂)

时间:2014-06-28 17:48:14      阅读:214      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   color   os   art   

题目链接

题意 : 用矩阵相乘求斐波那契数的后四位。

思路 :基本上纯矩阵快速幂。

bubuko.com,布布扣
 1 //3070
 2 #include <iostream>
 3 #include <cstring>
 4 #include <cstdio>
 5 
 6 using namespace std;
 7 
 8 struct Matrix
 9 {
10     int v[2][2];
11 };
12 int n;
13 
14 Matrix matrix_mul(Matrix a,Matrix b)
15 {
16     Matrix c;
17     for(int i = 0 ; i < 2 ; i++)
18     {
19         for(int j = 0 ; j < 2 ; j++)
20         {
21             c.v[i][j] = 0 ;
22             for(int k = 0 ; k < 2 ; k++)
23                 c.v[i][j]=(c.v[i][j]+a.v[i][k]*b.v[k][j])%10000;
24         }
25     }
26     return c;
27 }
28 
29 int matrix_mi()
30 {
31         Matrix p,t ;
32         p.v[0][0] = p.v[0][1] = p.v[1][0] = 1 ;
33         p.v[1][1] = 0;
34         t.v[0][0] = t.v[1][1] = 1 ;//t是单位向量
35         t.v[0][1] = t.v[1][0] = 0 ;
36         while(n)
37         {
38             if(n&1)//奇数
39                 t = matrix_mul(t,p);
40             n = n>>1 ;
41             p = matrix_mul(p,p);
42         }
43         return t.v[1][0] ;
44 }
45 int main()
46 {
47     while(scanf("%d",&n)!=EOF&&n!=-1)
48     {
49         if(n == 0 || n == 1)
50         {
51             cout<<n<<endl;
52             continue;
53         }
54         int ans = matrix_mi();
55         cout<<ans<<endl;
56     }
57     return 0;
58 }
View Code

 

POJ 3070 Fibonacci(矩阵快速幂),布布扣,bubuko.com

POJ 3070 Fibonacci(矩阵快速幂)

标签:style   blog   http   color   os   art   

原文地址:http://www.cnblogs.com/luyingfeng/p/3797531.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!