标签:style blog http color os art
题意 : 用矩阵相乘求斐波那契数的后四位。
思路 :基本上纯矩阵快速幂。
1 //3070 2 #include <iostream> 3 #include <cstring> 4 #include <cstdio> 5 6 using namespace std; 7 8 struct Matrix 9 { 10 int v[2][2]; 11 }; 12 int n; 13 14 Matrix matrix_mul(Matrix a,Matrix b) 15 { 16 Matrix c; 17 for(int i = 0 ; i < 2 ; i++) 18 { 19 for(int j = 0 ; j < 2 ; j++) 20 { 21 c.v[i][j] = 0 ; 22 for(int k = 0 ; k < 2 ; k++) 23 c.v[i][j]=(c.v[i][j]+a.v[i][k]*b.v[k][j])%10000; 24 } 25 } 26 return c; 27 } 28 29 int matrix_mi() 30 { 31 Matrix p,t ; 32 p.v[0][0] = p.v[0][1] = p.v[1][0] = 1 ; 33 p.v[1][1] = 0; 34 t.v[0][0] = t.v[1][1] = 1 ;//t是单位向量 35 t.v[0][1] = t.v[1][0] = 0 ; 36 while(n) 37 { 38 if(n&1)//奇数 39 t = matrix_mul(t,p); 40 n = n>>1 ; 41 p = matrix_mul(p,p); 42 } 43 return t.v[1][0] ; 44 } 45 int main() 46 { 47 while(scanf("%d",&n)!=EOF&&n!=-1) 48 { 49 if(n == 0 || n == 1) 50 { 51 cout<<n<<endl; 52 continue; 53 } 54 int ans = matrix_mi(); 55 cout<<ans<<endl; 56 } 57 return 0; 58 }
POJ 3070 Fibonacci(矩阵快速幂),布布扣,bubuko.com
标签:style blog http color os art
原文地址:http://www.cnblogs.com/luyingfeng/p/3797531.html