标签:style class blog http tar get
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2007
题意:给出一个n*n的格子,那么顶点显然有(n+1)*(n+1)个。每两个相邻顶点之间有两条边,这两条边是有向的,边上有权值。。左上角为源点,右下角为汇点,求s到t的最小割。
思路:很明显这是一个平面图,将其转化为最 短路。我们将s到t之间连一条边,左下角为新图的源点S,右上角区域为新图的终点T,并且为每个格子编号。由于边是有向的,我们就要分析下这条边应该是哪 个点向哪个点的边。假设下图的红线是答案。比如<S,7>的那条边,必然是从上向下的,<6,5>那条边必然是从下向上 的,<9,6>那条边必然是从左向右的,另外就是从右向左的边,必然是上面的格子到下面的格子。
vector<pair<int,int> > g[N];
int n,dis[N];
int get(int i,int j)
{
if(j==0||i==n+1) return 0;
if(i==0||j==n+1) return n*n+1;
return (i-1)*n+j;
}
priority_queue<pair<int,int> > Q;
int SPFA()
{
int i,s=0,t=n*n+1;
FOR0(i,t+1) dis[i]=INF;
dis[s]=0; Q.push(MP(0,s));
int u,v,c;
pair<int,int> p;
while(!Q.empty())
{
p=Q.top();
Q.pop();
u=p.second;
if(u==t) return -p.first;
FOR0(i,SZ(g[u]))
{
v=g[u][i].first;
c=g[u][i].second;
if(dis[v]>dis[u]+c)
{
dis[v]=dis[u]+c;
Q.push(MP(-dis[v],v));
}
}
}
}
int main()
{
RD(n);
int i,j,x,s,t;
for(i=1;i<=n+1;i++) for(j=1;j<=n;j++)
{
RD(x);
t=get(i-1,j);
s=get(i,j);
g[s].pb(MP(t,x));
}
for(i=1;i<=n;i++) for(j=1;j<=n+1;j++)
{
RD(x);
s=get(i,j-1);
t=get(i,j);
g[s].pb(MP(t,x));
}
for(i=1;i<=n+1;i++) for(j=1;j<=n;j++)
{
RD(x);
s=get(i-1,j);
t=get(i,j);
g[s].pb(MP(t,x));
}
for(i=1;i<=n;i++) for(j=1;j<=n+1;j++)
{
RD(x);
t=get(i,j-1);
s=get(i,j);
g[s].pb(MP(t,x));
}
PR(SPFA());
}
BZOJ 2007 海拔(平面图最小割-最短路),布布扣,bubuko.com
标签:style class blog http tar get
原文地址:http://www.cnblogs.com/jianglangcaijin/p/3799827.html