#! /usr/bin/env python
#coding:utf-8
from collections import defaultdict
from heapq import *
def prim( vertexs, edges ):
adjacent_vertex = defaultdict(list)
for v1,v2,length in edges:
adjacent_vertex[v1].append((length, v1, v2))
adjacent_vertex[v2].append((length, v2, v1))
"""
经过上述操作,将edges列表中各项归类成以某点为dictionary的key,其value则是其相邻的点以及边长。如下:
defaultdict(<type 'list'>, {'A': [(7, 'A', 'B'), (5, 'A', 'D')],
'C': [(8, 'C', 'B'), (5, 'C', 'E')],
'B': [(7, 'B', 'A'), (8, 'B', 'C'), (9, 'B', 'D'), (7, 'B', 'E')],
'E': [(7, 'E', 'B'), (5, 'E', 'C'), (15, 'E', 'D'), (8, 'E', 'F'), (9, 'E', 'G')],
'D': [(5, 'D', 'A'), (9, 'D', 'B'), (15, 'D', 'E'), (6, 'D', 'F')],
'G': [(9, 'G', 'E'), (11, 'G', 'F')],
'F': [(6, 'F', 'D'), (8, 'F', 'E'), (11, 'F', 'G')]})
"""
mst = [] #存储最小生成树结果
chosed = set(vertexs[0])
"""
vertexs是顶点列表,vertexs = list("ABCDEFG")===>vertexs=['A', 'B', 'C', 'D', 'E', 'F', 'G']
>> chosed=set(vertexs[0])
>> chosed
set(['A'])
也就是,首先选一个点(这个点是可以任意选的),以这个点为起点,找其相邻点,以及最短边长。
"""
#得到adjacent_vertexs_edges中顶点是'A'(nodes[0]='A')的相邻点list,即adjacent_vertexs['A']=[(7,'A','B'),(5,'A','D')]
adjacent_vertexs_edges = adjacent_vertex[vertexs[0]]
#将usable_edges加入到堆中,并能够实现用heappop从其中动态取出最小值。关于heapq模块功能,参考python官方文档
heapify(adjacent_vertexs_edges)
while adjacent_vertexs_edges:
#得到某个定点(做为adjacent_vertexs_edges的键)与相邻点距离(相邻点和边长/距离做为该键的值)最小值,并同时从堆中清除。
w, v1, v2 = heappop(adjacent_vertexs_edges)
if v2 not in chosed:
#在used中有第一选定的点'A',上面得到了距离A点最近的点'D',举例是5。将'd'追加到used中
chosed.add(v2)
mst.append((v1,v2,w)) #将v1,v2,w,第一次循环就是('A','D',5) append into mst
#再找与d相邻的点,如果没有在heap中,则应用heappush压入堆内,以加入排序行列
for next_vertex in adjacent_vertex[v2]:
if next_vertex[2] not in chosed:
heappush( adjacent_vertexs_edges,next_vertex)
return mst
#test
vertexs = list("ABCDEFG")
edges = [ ("A", "B", 7), ("A", "D", 5),
("B", "C", 8), ("B", "D", 9),
("B", "E", 7), ("C", "E", 5),
("D", "E", 15), ("D", "F", 6),
("E", "F", 8), ("E", "G", 9),
("F", "G", 11)]
print "edges:",edges
print "prim:", prim( vertexs, edges )
原文地址:http://blog.csdn.net/qiwsir/article/details/32702831