标签:style class blog code java http
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array[−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray[4,−1,2,1]has the largest sum =6.
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
https://oj.leetcode.com/problems/maximum-subarray/
思路1:Kadane算法,复杂度O(n)。
思路2:分治。对于每次递归,将数组分半,最大和可能存在
注意点:注意负数的处理,此题最大值为负数时依然返回最大的负数,也有题目负数时要求返回0。注意两种情况下最大值的初始化等细节的区别。
思路1代码:
public class Solution {
public int maxSubArray(int[] A) {
int n = A.length;
int i;
int maxSum = A[0];
int thisSum = 0;
for (i = 0; i < n; i++) {
thisSum += A[i];
if (thisSum > maxSum)
maxSum = thisSum;
if (thisSum < 0)
thisSum = 0;
}
return maxSum;
}
public static void main(String[] args) {
System.out.println(new Solution().maxSubArray(new int[] { -2, 1, -3, 4,
-1, 2, 1, -5, 4 }));
}
}
思路2代码:
public class Solution {
public int maxSubArray(int[] A) {
return maxSub(A, 0, A.length - 1);
}
private int maxSub(int[] a, int left, int right) {
if (left == right)
return a[left];
int mid = (left + right) / 2;
int maxLeft = maxSub(a, left, mid);
int maxRight = maxSub(a, mid + 1, right);
int leftHalf = 0, leftHalfMax = Integer.MIN_VALUE;
int rightHalf = 0, rightHalfMax = Integer.MIN_VALUE;
for (int i = mid; i >= left; i--) {
leftHalf += a[i];
if (leftHalf > leftHalfMax)
leftHalfMax = leftHalf;
}
for (int i = mid + 1; i <= right; i++) {
rightHalf += a[i];
if (rightHalf > rightHalfMax)
rightHalfMax = rightHalf;
}
return Math.max(Math.max(maxLeft, maxRight), (leftHalfMax + rightHalfMax));
}
public static void main(String[] args) {
System.out.println(new Solution().maxSubArray(new int[] { -2, -1, -3, -2, -5 }));
}
}
参考:
Data Structures and Algorithm Analysis in C
[leetcode] Maximum Subarray,布布扣,bubuko.com
标签:style class blog code java http
原文地址:http://www.cnblogs.com/jdflyfly/p/3810766.html