码迷,mamicode.com
首页 > 其他好文 > 详细

[leetcode] Maximum Subarray

时间:2014-06-27 11:43:25      阅读:173      评论:0      收藏:0      [点我收藏+]

标签:style   class   blog   code   java   http   

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array[−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray[4,−1,2,1]has the largest sum =6.

More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

https://oj.leetcode.com/problems/maximum-subarray/

思路1:Kadane算法,复杂度O(n)。

思路2:分治。对于每次递归,将数组分半,最大和可能存在

  1. 完全在左面部分(递归求解)
  2. 完全在右面部分(递归求解)
  3. 横跨左右两个部分(从中间(必须包含中间元素,否则左右无法连接)向两边加,记录最大值)

注意点:注意负数的处理,此题最大值为负数时依然返回最大的负数,也有题目负数时要求返回0。注意两种情况下最大值的初始化等细节的区别。

 

思路1代码:

public class Solution {
	public int maxSubArray(int[] A) {
		int n = A.length;
		int i;
		int maxSum = A[0];
		int thisSum = 0;
		for (i = 0; i < n; i++) {
			thisSum += A[i];
			if (thisSum > maxSum)
				maxSum = thisSum;
			if (thisSum < 0)
				thisSum = 0;
		}
		return maxSum;
	}

	public static void main(String[] args) {
		System.out.println(new Solution().maxSubArray(new int[] { -2, 1, -3, 4,
				-1, 2, 1, -5, 4 }));
	}
}

思路2代码:

public class Solution {
    public int maxSubArray(int[] A) {
        return maxSub(A, 0, A.length - 1);
    }

    private int maxSub(int[] a, int left, int right) {
        if (left == right)
            return a[left];
        int mid = (left + right) / 2;
        int maxLeft = maxSub(a, left, mid);
        int maxRight = maxSub(a, mid + 1, right);

        int leftHalf = 0, leftHalfMax = Integer.MIN_VALUE;
        int rightHalf = 0, rightHalfMax = Integer.MIN_VALUE;

        for (int i = mid; i >= left; i--) {
            leftHalf += a[i];
            if (leftHalf > leftHalfMax)
                leftHalfMax = leftHalf;
        }

        for (int i = mid + 1; i <= right; i++) {
            rightHalf += a[i];
            if (rightHalf > rightHalfMax)
                rightHalfMax = rightHalf;
        }

        return Math.max(Math.max(maxLeft, maxRight), (leftHalfMax + rightHalfMax));
    }

    public static void main(String[] args) {
        System.out.println(new Solution().maxSubArray(new int[] { -2, -1, -3, -2, -5 }));
    }
}
参考:

Data Structures and Algorithm Analysis in C

http://blog.csdn.net/xshengh/article/details/12708291

 

[leetcode] Maximum Subarray,布布扣,bubuko.com

[leetcode] Maximum Subarray

标签:style   class   blog   code   java   http   

原文地址:http://www.cnblogs.com/jdflyfly/p/3810766.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!