证明:(1)我们可知球心所组成的点列$\left\{ {{x_n}} \right\}_{n = 1}^\infty $是基本列.事实上,当$m \ge n$时,由$x \in {B_m} \subset {B_n}$得\[d\left( {{x_m},{x_n}} \right) \le {\varepsilon _n}\]由于${\varepsilon _n} \to 0$,则对任给$\varepsilon > 0$,存在$N$,使得当$n\ge N$,有${\varepsilon _n}<\varepsilon$,于是当$m,n\ge N$时,有\[d\left( {{x_m},{x_n}} \right) < \varepsilon \]所以$\left\{ {{x_n}} \right\}_{n = 1}^\infty $是基本列
(2)由于空间$X$是完备的,则点列$\left\{ {{x_n}} \right\}_{n = 1}^\infty $收敛于$X$中的一点$x$,令$m\to \infty$,则由距离的连续性知\[d\left( {x,{x_n}} \right) \le {\varepsilon _n}\]所以$x\in {B_n},n = 1,2, \cdots $,即$x \in \bigcap\limits_{n = 1}^\infty {{B_n}} $
(3)假设还存在$X$中的点$y \in \bigcap\limits_{n = 1}^\infty {{B_n}} $,则\[d\left( {y,{x_n}} \right) \le {\varepsilon _n}\]令$n\to \infty$,则$d\left( {y,x} \right) = \lim \limits_{n \to \infty } d\left( {y,{x_n}} \right) = 0$,所以由度量空间的定义知$y=x$,即证
原文地址:http://www.cnblogs.com/ly758241/p/3813196.html