标签:des blog http java 使用 strong
欢迎转载,转载请注明出处,徽沪一郎。
Spark Streaming能够对流数据进行近乎实时的速度进行数据处理。采用了不同于一般的流式数据处理模型,该模型使得Spark Streaming有非常高的处理速度,与storm相比拥有更高的吞能力。
本篇简要分析Spark Streaming的处理模型,Spark Streaming系统的初始化过程,以及当接收到外部数据时后续的处理步骤。
与一般的文件(即内容已经固定)型数据源相比,所谓的流数据拥有如下的特点
如果要用一句话来概括Spark Streaming的处理思路的话,那就是"将连续的数据持久化,离散化,然后进行批量处理"。
让我们来仔细分析一下这么作的原因。
DStream可以说是对RDD的又一层封装。如果打开DStream.scala和RDD.scala,可以发现几乎RDD上的所有operation在DStream中都有相应的定义。
作用于DStream上的operation分成两类
有输入就要有输出,如果没有输出,则前面所做的所有动作全部没有意义,那么如何将这些输入和输出绑定起来呢?这个问题的解决就依赖于DStreamGraph,DStreamGraph记录输入的Stream和输出的Stream。
private val inputStreams = new ArrayBuffer[InputDStream[_]]()
private val outputStreams = new ArrayBuffer[DStream[_]]()
var rememberDuration: Duration = null
var checkpointInProgress = false
outputStreams中的元素是在有Output类型的Operation作用于DStream上时自动添加到DStreamGraph中的。
outputStream区别于inputStream一个重要的地方就是会重载generateJob.
StreamingContext是Spark Streaming初始化的入口点,主要的功能是根据入参来生成JobScheduler
如果流数据源来自于socket,则使用socketStream。如果数据源来自于不断变化着的文件,则可使用fileStream
StreamingContext.start()
以socketStream为例,数据来自于socket。
SocketInputDstream启动一个线程,该线程使用receive函数来接收数据
def receive() {
var socket: Socket = null
try {
logInfo("Connecting to " + host + ":" + port)
socket = new Socket(host, port)
logInfo("Connected to " + host + ":" + port)
val iterator = bytesToObjects(socket.getInputStream())
while(!isStopped && iterator.hasNext) {
store(iterator.next)
}
logInfo("Stopped receiving")
restart("Retrying connecting to " + host + ":" + port)
} catch {
case e: java.net.ConnectException =>
restart("Error connecting to " + host + ":" + port, e)
case t: Throwable =>
restart("Error receiving data", t)
} finally {
if (socket != null) {
socket.close()
logInfo("Closed socket to " + host + ":" + port)
}
}
}
}
接收到的数据会被先存储起来,存储最终会调用到BlockManager.scala中的函数,那么BlockManager是如何被传递到StreamingContext的呢?利用SparkEnv传入的,注意StreamingContext构造函数的入参。
数据的存储有是被socket触发的。那么已经存储的数据被真正的处理又是被什么触发的呢?
记得在初始化StreamingContext的时候,我们指定了一个时间参数,那么用这个参数会构造相应的重复定时器,一旦定时器超时,调用generateJobs函数。
private val timer = new RecurringTimer(clock, ssc.graph.batchDuration.milliseconds, longTime => eventActor ! GenerateJobs(new Time(longTime)), "JobGenerator")
事件处理函数
/** Processes all events */
private def processEvent(event: JobGeneratorEvent) {
logDebug("Got event " + event)
event match {
case GenerateJobs(time) => generateJobs(time)
case ClearMetadata(time) => clearMetadata(time)
case DoCheckpoint(time) => doCheckpoint(time)
case ClearCheckpointData(time) => clearCheckpointData(time)
}
}
generteJobs
private def generateJobs(time: Time) {
SparkEnv.set(ssc.env)
Try(graph.generateJobs(time)) match {
case Success(jobs) =>
val receivedBlockInfo = graph.getReceiverInputStreams.map { stream =>
val streamId = stream.id
val receivedBlockInfo = stream.getReceivedBlockInfo(time)
(streamId, receivedBlockInfo)
}.toMap
jobScheduler.submitJobSet(JobSet(time, jobs, receivedBlockInfo))
case Failure(e) =>
jobScheduler.reportError("Error generating jobs for time " + time, e)
}
eventActor ! DoCheckpoint(time)
}
generateJobs->generateJob一路下去会调用到Job.run,在job.run中调用sc.runJob,在具体调用路径就不一一列出。
private class JobHandler(job: Job) extends Runnable {
def run() {
eventActor ! JobStarted(job)
job.run()
eventActor ! JobCompleted(job)
}
}
DStream.generateJob函数中定义了jobFunc,也就是在job.run()中使用到的jobFunc
private[streaming] def generateJob(time: Time): Option[Job] = {
getOrCompute(time) match {
case Some(rdd) => {
val jobFunc = () => {
val emptyFunc = { (iterator: Iterator[T]) => {} }
context.sparkContext.runJob(rdd, emptyFunc)
}
Some(new Job(time, jobFunc))
}
case None => None
}
}
在这个流程中,DStreamGraph起到非常关键的作用,非常类似于TridentStorm中的graph.
在generateJob过程中,DStream会通过调用compute函数生成相应的RDD,SparkContext则是将基于RDD的抽象转换成为多个stage,而执行。
StreamingContext中一个重要的转换就是DStream到RDD的转换,而SparkContext中一个重要的转换是RDD到Stage及Task的转换。在这两个不同的抽象类中,要注意其中getOrCompute和compute函数的实现。
本篇内容有点仓促,内容不够丰富翔实,争取回头有空的时候再好好丰富一下具体的调用路径。
对于容错处理机制,本文没有涉及,待研究明白之后另起一篇进行阐述。
Apache Spark源码走读之4 -- DStream实时流数据处理,布布扣,bubuko.com
Apache Spark源码走读之4 -- DStream实时流数据处理
标签:des blog http java 使用 strong
原文地址:http://www.cnblogs.com/downtjs/p/3815291.html