码迷,mamicode.com
首页 > 其他好文 > 详细

GCD&&LCM的一些经典问题

时间:2015-06-06 13:33:23      阅读:92      评论:0      收藏:0      [点我收藏+]

标签:

1.1~n的所有数的最小公倍数:lightoj 1289  传送门

分析:素因子分解可知这个数等于小于1~n的所有素数的最高次幂的乘积

预处理1~n的所有质数,空间较大,筛选的时候用位图来压缩,和1~n所有

质数的乘积,剩下的就是找最高次幂的问题了。

代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#define PB push_back
#define MP make_pair
#define REP(i,n) for(int i=0;i<(n);++i)
#define FOR(i,l,h) for(int i=(l);i<=(h);++i)
#define DWN(i,h,l) for(int i=(h);i>=(l);--i)
#define IFOR(i,h,l,v) for(int i=(h);i<=(l);i+=(v))
#define CLR(vis) memset(vis,0,sizeof(vis))
#define MST(vis,pos) memset(vis,pos,sizeof(vis))
#define MAX3(a,b,c) max(a,max(b,c))
#define MAX4(a,b,c,d) max(max(a,b),max(c,d))
#define MIN3(a,b,c) min(a,min(b,c))
#define MIN4(a,b,c,d) min(min(a,b),min(c,d))
#define PI acos(-1.0)
#define INF 1000000000
#define LINF 1000000000000000000LL
#define eps 1e-8
#define LL long long
using namespace std;

const int maxn = 1e8+10;

typedef unsigned int UI;

UI tmp[5800000];
int vis[maxn/32+10];
int p[5800000],cnt;

void init(){
    cnt=0;
    p[0]=tmp[0]=2;
    cnt++;
    IFOR(i,3,maxn-1,2){
        if(!(vis[i/32]&(1<<(i%32)))){//用位图压缩节省空间
            p[cnt]=i;
            tmp[cnt]=tmp[cnt-1]*i;
            cnt++;
            IFOR(j,3*i,maxn-1,2*i) vis[j/32]|=(1<<(j%32));
        }
    }
}

UI solve(int n){
    int pos = upper_bound(p,p+cnt,n)-p-1;
    UI ans = tmp[pos];
    for(int i=0;i<cnt&&p[i]*p[i]<=n;i++){
        int  mul = p[i];
        int ff=p[i]*p[i];
        while(ff/mul==p[i]&&ff<=n){
            mul=mul*p[i];
            ff=ff*p[i];
        }
        ans=ans*(mul/p[i]);
    }
    return ans;
}

int main()
{
    init();
    int t,cas=1,n;
    scanf("%d",&t);
    while(t--){
        scanf("%d",&n);
        printf("Case %d: %u\n",cas++,solve(n));
    }
    return 0;
}


 

2,1~n中最小公倍数等于n的数的对数 lightoj 1236 传送门

很明显这些数都是 n 的约数,

然后n=p1^a1*p1^a2*p3^a3...*pn^an;

对这两个数素因子分解要使得的每一个素数ai的最高次等于ai,

因此对于每一个因子的可能方案就有 (ai+1)*2-1;

代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

const int maxn = 1e7+10;

int p[maxn/5],tot;
bool vis[maxn];
void init(){
    tot=0;
    memset(vis,0,sizeof(vis));
    for(int i=2;i<maxn;i++){
        if(!vis[i]){
            p[tot++]=i;
            for(int j=i+i;j<maxn;j+=i)
                vis[j]=1;
        }
    }
}

int main()
{
    init();
    int t,cas=1;
    scanf("%d",&t);
    while(t--){
        long long n;
        scanf("%lld",&n);
        long long ans = 1;
        for(int i=0;i<tot&&p[i]*p[i]<=n;i++){
            if(n%p[i]==0){
                long long cnt = 0;
                while(n%p[i]==0)cnt++,n/=p[i];
                ans=ans*(cnt*2+1);
            }
        }
        if(n>1) ans*=3;
        ans=ans/2+1;
        printf("Case %d: %lld\n",cas++,ans);
    }
    return 0;
}


3. 1~n中任意两对数的最大公约数之和 UVA 11426 传送门

我们设 f[n] = sigma(gcd(i , n)) 1<=i<n

那么 ans[n] = ans[n-1] + f[n];

在求f[n]的时候我们可以枚举gcd 然后f[n]+=gcd*phi(n/gcd);

代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

#define PB push_back
#define MP make_pair
#define REP(i,n) for(int i=0;i<(n);++i)
#define FOR(i,l,h) for(int i=(l);i<=(h);++i)
#define DWN(i,h,l) for(int i=(h);i>=(l);--i)
#define IFOR(i,h,l,v) for(int i=(h);i<=(l);i+=(v))
#define CLR(vis) memset(vis,0,sizeof(vis))
#define MST(vis,pos) memset(vis,pos,sizeof(vis))
#define MAX3(a,b,c) max(a,max(b,c))
#define MAX4(a,b,c,d) max(max(a,b),max(c,d))
#define MIN3(a,b,c) min(a,min(b,c))
#define MIN4(a,b,c,d) min(min(a,b),min(c,d))
#define PI acos(-1.0)
#define INF 1000000000
#define LINF 1000000000000000000LL
#define eps 1e-8
#define maxn  4000001
#define LL long long
using namespace std;

int phi[maxn];

LL ans[maxn];
LL f[maxn];
void init(){
    FOR(i,1,maxn-1) phi[i]=i;
    IFOR(i,2,maxn-1,2) phi[i]=phi[i]>>1;
    IFOR(i,3,maxn-1,2){
        if(phi[i]==i){
            IFOR(j,i,maxn-1,i)
            phi[j]=phi[j] -phi[j]/i;
        }
    }
}

void solve(){
    CLR(ans);
    init();
    FOR(i,1,maxn-1){
        IFOR(j,i+i,maxn,i)
            f[j]=f[j]+(LL)i*phi[j/i];
    }
    ans[1]=f[1];
    FOR(i,2,maxn-1) ans[i]=ans[i-1]+f[i];
}

int main()
{
    solve();
    int n;
    while(~scanf("%d",&n)&&n){
        printf("%lld\n",ans[n]);
    }
    return 0;
}


 

GCD&&LCM的一些经典问题

标签:

原文地址:http://blog.csdn.net/bigbigship/article/details/46386865

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!