标签:des style blog http width 2014
OPENCV 中的代码改进,当然要根据自己的实际情况来,OPENCV 中行人检测有两种矩形框的融合算法,这里只对meanshift 方法做改进
如果有更好的方法,希望可以跟我讲下。
对于去除重合部分,我也写了改进,看懂了可以加到自己程序中。
为什么要做局部MeanShift?
图1.全局MeanShift
如图所示:两幅图像距离较近且有多个矩形框,全局MeanShift融合后可能会造成这种结果
而如果用局部融合就能避免这种情况。
/*----------------------------------分数判定:begin--------------------------------------------------*/ //////////////将感兴趣区域归一化后计算HOG特征--begin//////////////////// cvSetImageROI(imageOrigin,r); IplImage *test=cvCreateImage(cvGetSize(imageOrigin),8,3); cvCopyImage(imageOrigin,test); cvResetImageROI(imageOrigin); IplImage* testTempImg=cvCreateImage(cvSize(40,40),8,3); cvZero(testTempImg); cvResize(test,testTempImg); hog->compute(testTempImg, descriptors,Size(1,1), Size(0,0)); //Hog特征计算 Mat another(descriptors); descriptors.clear(); ////////////将感兴趣区域归一化后计算HOG特征--end/////////////// double ret = 0; ret = ssvm.get_calc_liner(vec_count,var_count,a,another,results,alpha,0)-rho; //计算SVM分数 //////////////////////////// cvReleaseImage(&test); cvReleaseImage(&testTempImg); //////////////////////////// if(ret <0) { continue; //去掉SVM 分值小于0的图像 } rc_.push_back(rcc); weights.push_back(ret); double rate = max(rcc.width*1.0/40,rcc.height*1.0/40); //选取长宽最大值,作为尺度,考虑还不够周到,这里改变,Meanshift 全部都要改 //这里还可以改进 foundScales.push_back(rate); /*----------------------------------分数判定:end--------------------------------------------------*/ //////////上述应该是一个循环,加入多个点////////////// /////////////////////////融合过程-begin//////////////////////////// //vector<Rect> rc_;//矩形框 // vector<double> weights;//权重,score // vector<double> foundScales;//放缩尺度 groupRectangles_meanshift1(rc_, weights, foundScales, 0.3, Size(40,40)); //框出来的矩形框进行融合 //groupRectangles_meanshift1该函数在最后定义// ///////////////////////融合过程-end/////////////////////////// //////////////////重合去重第一步:计算融合后的分值////////////////// for( i = 0; i < rc_.size(); i++ ) { //加入矩形框 Rect r = rc_[i]; found_filtered.push_back(r); } vector<float> found_score(found_filtered.size()); //矩形框的分数 for( i = 0; i < found_filtered.size(); i++ ) { Rect r = found_filtered[i]; ////////////////////////////////// cvSetImageROI(imageOrigin,r); IplImage *test=cvCreateImage(cvGetSize(imageOrigin),8,3); cvCopyImage(imageOrigin,test); cvResetImageROI(imageOrigin); IplImage* testTempImg=cvCreateImage(cvSize(40,40),8,3); cvZero(testTempImg); cvResize(test,testTempImg); hog->compute(testTempImg, descriptors,Size(1,1), Size(0,0)); //Hog特征计算 Mat another(descriptors); descriptors.clear(); double ret = 0; ret= ssvm.get_calc_liner(vec_count,var_count,a,another,results,alpha,0)-rho; cvReleaseImage(&test); cvReleaseImage(&testTempImg); found_score[i]=ret; //////////////////////////// } ////////重合去重第二步:矩形框内的部分,取分值最大的///// //////////////////////found_filtered为融合后的矩形框////////////////////////// for( i = 0; i < found_filtered.size(); i++ ) { //进行了重合去除,选取附近分值最大矩形框 Rect r = found_filtered[i]; for( j = 0; j < rc_.size(); j++ ) if( j != i && (r & found_filtered[j]).area() == r.area()) {//这里是将重叠的部分,分值小的矩形框的权重设为-1,为了取最大值 if(found_score[i]>found_score[j]) { found_score[j]=-1; break; } else { found_score[i]=-1; break; } } } ////////重合去重第三步:重叠部分,取分值最大的///// ////////////////////////////////////////////////////////////////// for( i = 0; i < found_filtered.size(); i++ ) { //进行了重合去除 Rect r = found_filtered[i]; for( j = 0; j < rc_.size(); j++ ) //判定重合是否大于相较面积的70%(这个比例有待测试) //判定都为上一步过滤后的结果,可能存在部分相较,但不包含的情况 if( j != i && (r & found_filtered[j]).area() >= r.area()*0.7 &&found_score[j]!=-1&&found_score[i]!=-1) {//这里是将重叠的部分,分值小的矩形框的权重设为-1 if(found_score[i]>found_score[j]) { found_score[j]=-1; break; } else { found_score[i]=-1; break; } } } for(int i=0;i<found_filtered.size();i++) { if (found_score[i]==-1)//将分值等于-1的过滤掉 { continue; } Rect r = found_filtered[i]; r.x -= cvRound(r.width*0.05); r.width = cvRound(r.width*1.05); r.y -= cvRound(r.height*0.05); r.height = cvRound(r.height*1.05); rectangle(img_dst, r.tl(), r.br(), cv::Scalar(0,255,0), 2); //在图像上画矩形框 } /*-----------------------MeanShift做局部的(源程序是对全局)------------------------*/ //meanshift 融合 class MeanshiftGrouping { public: // MeanshiftGrouping msGrouping(smothing, hits,rectList, hitWeights, 1e-5, 100);//得到 /////////////////////////////////////////////////////////////////////// // msGrouping.getModes(resultHits, resultWeights, 1); ////////////////////////////////////////////////////////////////////// MeanshiftGrouping(const Point3d& densKer, const vector<Point3d>& posV,const vector<Rect>&list, const vector<double>& wV, double eps, int maxIter = 20) { densityKernel = densKer; weightsV = wV; positionsV = posV; positionsCount = (int)posV.size(); meanshiftV.resize(positionsCount); distanceV.resize(positionsCount); iterMax = maxIter; modeEps = eps; for (unsigned i = 0; i<positionsV.size(); i++) { meanshiftV[i] = getNewValue(positionsV[i],list[i],list);//positionV 只有中点坐标没有长宽。 distanceV[i] = moveToMode(meanshiftV[i],list[i],list);//做最大为iterMax次循环//均值漂移后的值 meanshiftV[i] -= positionsV[i];//这一步后面没用到 } } void getModes(vector<Point3d>& modesV, vector<double>& resWeightsV, const double eps) { for (size_t i=0; i <distanceV.size(); i++) { bool is_found = false; for(size_t j=0; j<modesV.size(); j++) { if ( getDistance(distanceV[i], modesV[j]) < eps)//欧式距离小于阈值 { is_found=true; break; } } if (!is_found) { modesV.push_back(distanceV[i]);//添加距离较大的点,也就是说两个点距离较大,不是同一个矩形框 } } resWeightsV.resize(modesV.size()); for (size_t i=0; i<modesV.size(); i++) { resWeightsV[i] = getResultWeight(modesV[i]);//得到点的权值 } } protected: vector<Point3d> positionsV; vector<double> weightsV; Point3d densityKernel; int positionsCount; vector<Point3d> meanshiftV; vector<Point3d> distanceV; int iterMax; double modeEps; Point3d getNewValue(const Point3d& inPt ,const Rect inR ,const vector<Rect>list) const {//inPt 输入三维坐标 、inR 为输入的矩形 list为所有矩形 Point3d resPoint(.0); Point3d ratPoint(.0); int value=20;//只考虑矩形框四个角差值小于20的点,这个可以自己设定 for (size_t i=0; i<positionsV.size(); i++) { Point3d aPt= positionsV[i]; // double rate = exp(aPt.z); if(inR.x -list[i].x>value||inR.y -list[i].y>value||inR.width -list[i].width>value||inR.height -list[i].height>value) continue;//局部判断,如果不是同一个矩形附近,将排除附近矩形的影响 Point3d bPt = inPt; Point3d sPt = densityKernel;//核 //////////////////////////////////////// sPt.x *= exp(aPt.z);//Z为尺度 sPt.y *= exp(aPt.z); aPt.x /= sPt.x; aPt.y /= sPt.y; aPt.z /= sPt.z; bPt.x /= sPt.x; bPt.y /= sPt.y; bPt.z /= sPt.z; ///映射到对应尺度的图片的坐标/////////sPt为scale//反归一化 //////////////////////////////////////////// double w = (weightsV[i])*std::exp(-((aPt-bPt).dot(aPt-bPt))/2)/std::sqrt(sPt.dot(Point3d(1,1,1))); //重新计算的权重,原权重weightsV[i]为线性SVM的得分 resPoint += w*aPt;//根据中心点的距离加相应的权值,距离越近,权值越大 ratPoint.x += w/sPt.x;//这边除以权重值,使得放缩后的图像权重变小 ratPoint.y += w/sPt.y; ratPoint.z += w/sPt.z; } resPoint.x /= ratPoint.x; resPoint.y /= ratPoint.y; resPoint.z /= ratPoint.z; return resPoint;//返回被周围点影响后的值 } double getResultWeight(const Point3d& inPt) const { double sumW=0;//最终返回的值 int num=0; size_t aa=positionsV.size();//位置点的个数 int len = int(aa);//位置点的个数 for (size_t i=0; i<aa; i++) { Point3d aPt = positionsV[i]; Point3d sPt = densityKernel; sPt.x *= exp(aPt.z); sPt.y *= exp(aPt.z); aPt -= inPt;//讲个坐标之差 aPt.x /= sPt.x; aPt.y /= sPt.y; aPt.z /= sPt.z; /*-----------------这块还可以优化,策略的考虑,权重的选取--begin-----------------*/ if(aa>10)//考虑如果aa的数量过小时 { double mm = aPt.dot(aPt); if(aPt.dot(aPt)<=0.5)//两个点的欧式距离 { if(weightsV[i]>0.6)//weightsV[i] 为svm的权值 { sumW+=0.35; } else if(weightsV[i]>0.3) { sumW+=0.3; } continue; } //////////////////////////原始/////////// sumW+=(weightsV[i])*std::exp(-(aPt.dot(aPt))/2)/std::sqrt(sPt.dot(Point3d(1,1,1))); ///////////////////////////////////////// } else { //sumW+=weightsV[i]; sumW+=(weightsV[i])*std::exp(-(aPt.dot(aPt))/2)*2.8; } /*---------待优化部分-----------------*/ /*------这块还可以优化,策略的考虑,权重的选取--end------*/ return sumW;//计算最后的权值 } Point3d moveToMode(Point3d aPt ,Rect inR, const vector<Rect>list) const {//均值漂移后的位置 Point3d bPt; for (int i = 0; i<iterMax; i++) { bPt = aPt; aPt = getNewValue(bPt,inR,list); if ( getDistance(aPt, bPt) <= modeEps )//小于阈值时返回,说明达到稳定状态 { break; } } return aPt;//返回稳定状态的值 } double getDistance(Point3d p1, Point3d p2) const {//计算欧式距离 Point3d ns = densityKernel; ns.x *= exp(p2.z); ns.y *= exp(p2.z); p2 -= p1; p2.x /= ns.x; p2.y /= ns.y; p2.z /= ns.z; return p2.dot(p2); } }; void groupRectangles_meanshift2(vector<Rect>& rectList, double detectThreshold, vector<double>* foundWeights, vector<double>& scales, Size winDetSize) //被groupRectangles_meanshift1调用 { int detectionCount = (int)rectList.size();//矩形的个数 vector<Point3d> hits(detectionCount), resultHits; vector<double> hitWeights(detectionCount), resultWeights; Point2d hitCenter; for (int i=0; i < detectionCount; i++) { hitWeights[i] = (*foundWeights)[i]; hitCenter = (rectList[i].tl() + rectList[i].br())*(0.5); //center of rectangles hits[i] = Point3d(hitCenter.x, hitCenter.y, std::log(scales[i]));//中心坐标x、y、log(scale) } if (foundWeights) foundWeights->clear(); double logZ = std::log(1.3); Point3d smothing(8, 16, logZ); MeanshiftGrouping msGrouping(smothing, hits,rectList, hitWeights, 1e-5, 100);//得到 /////////////////////////////////////////////////////////////////////// msGrouping.getModes(resultHits, resultWeights, 1); ////////////////////////////////////////////////////////////////////// rectList.clear(); for (unsigned i=0; i < resultHits.size(); ++i) { double scale = exp(resultHits[i].z);//还原尺度 hitCenter.x = resultHits[i].x;//中心坐标 hitCenter.y = resultHits[i].y; Size s( int(winDetSize.width*scale), int(winDetSize.height*scale) );//还原窗的大小 Rect resultRect( int(hitCenter.x-s.width/2), int(hitCenter.y-s.height/2), int(s.width), int(s.height) );//还原窗的位置 if (resultWeights[i] > detectThreshold)//detectThreshold 大于阈值的权重值输出 {//返回矩形框 和 权值 rectList.push_back(resultRect); foundWeights->push_back(resultWeights[i]); } } } void groupRectangles_meanshift1(vector<Rect>& rectList, vector<double>& foundWeights, vector<double>& foundScales, double detectThreshold, Size winDetSize) { groupRectangles_meanshift2(rectList, detectThreshold, &foundWeights, foundScales, winDetSize); //rectList矩形列表, detectThreshold阈值, foundWeights得分, foundScales尺度, winDetSize窗口大小 }
对opencv MeanShift 融合矩形框的改进,布布扣,bubuko.com
标签:des style blog http width 2014
原文地址:http://blog.csdn.net/yeyang911/article/details/35985807