最近都在复习英语,看见看得头都大了,而且阅读越做分数越低!换个环境,做做Leetcode试题!
题目:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
一道动态规划问题,在《动态规划:数塔问题》一文中已经详细描述过这个问题(一个是求最大值,一个是求最小值),有兴趣的可以参考这篇文章。不过当时使用的是一个二维的数组,现在使用一个一维的数组对代码进行优化。
动态规划的递推公式为:dp[i][j] = min(dp[i+1][j], dp[i+1][j+1]) + triangle[i][j]
下面给出C++参考代码:
class Solution { public: int minimumTotal(vector<vector<int> > &triangle) { int row = triangle.size(); if (row == 0) return 0; vector<int> dp(row); // 初始化dp容大小为triangle最后一行数据的个数 for (size_t i = 0; i < row; ++i) { dp[i] = triangle[row - 1][i]; // dp初始化为triangle的最后一行 } // 动态规划 for (size_t i = row - 1; i > 0; --i) { for (size_t j = 0; j < triangle[i].size() - 1; ++j) { dp[j] = min(dp[j], dp[j + 1]) + triangle[i - 1][j]; } } return dp[0]; } };
原文地址:http://blog.csdn.net/theonegis/article/details/46399243