码迷,mamicode.com
首页 > 其他好文 > 详细

[再寄小读者之数学篇](2015-06-08 一个有意思的定积分计算)

时间:2015-06-08 11:13:53      阅读:148      评论:0      收藏:0      [点我收藏+]

标签:

$$\beex \bea \int_0^\frac{\pi}{4}\ln (1+\tan x)\rd x &=\int_0^\frac{\pi}{4} \ln \frac{\cos x+\sin x}{\cos x}\rd x\\ &=\int_0^\frac{\pi}{4} \ln \sez{\sqrt{2}\sin \sex{x+\frac{\pi}{4}}}-\ln \cos x\rd x\\ &=\frac{\pi}{8}\ln 2 +\int_\frac{\pi}{4}^\frac{\pi}{2}\ln \sin \sex{x+\frac{\pi}{4}}\rd x -\int_0^\frac{\pi}{4}\ln \cos x\rd x\\ &=\frac{\pi}{8}\ln 2 +\int_\frac{\pi}{4}^\frac{\pi}{2}\ln \sin t\rd t -\int_{-\frac{\pi}{4}}^0 \ln \cos s\rd s\quad\sex{x+\frac{\pi}{4}=t,\ x=-s}\\ &=\frac{\pi}{8}\ln 2\quad\sex{s+\frac{\pi}{2}=t}. \eea \eeex$$ 今天上课有个学生问的. 当时写出了第一步, 没写下去了... 

[再寄小读者之数学篇](2015-06-08 一个有意思的定积分计算)

标签:

原文地址:http://www.cnblogs.com/zhangzujin/p/4560324.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!