标签:
Find the total area covered by two rectilinear rectangles in a 2D plane.
Each rectangle is defined by its bottom left corner and top right corner as shown in the figure.
Assume that the total area is never beyond the maximum possible value of int.
对各种case做好处理,分别分析相交图形的长宽,求面积。
class Solution { public: int computeArea(int A, int B, int C, int D, int E, int F, int G, int H) { int l1 = 0; int l2 = 0; if(A<=E&&G<=C) l1 = G-E; if(A<=E&&E<=C&&C<=G) l1 = C-E; if(E<=A&&A<=G&&G<=C) l1 = G-A; if(E<=A&&C<=G) l1 = C-A; if(B<=F&&H<=D) l2 = H-F; if(B<=F&&F<=D&&D<=H) l2 = D-F; if(F<=B&&B<=H&&H<=D) l2 = H-B; if(F<=B&&D<=H) l2 = D-B; return (C-A)*(D-B)+(G-E)*(H-F)-l1*l2; } };
class Solution { public: int computeArea(int A, int B, int C, int D, int E, int F, int G, int H) { return (C-A)*(D-B)+(G-E)*(H-F)-max(0,min(C,G)-max(E,A))*max(0,min(D,H)-max(F,B)); } };
标签:
原文地址:http://blog.csdn.net/ciaoliang/article/details/46413825