码迷,mamicode.com
首页 > 其他好文 > 详细

No.164 Maximum Gap

时间:2015-06-08 19:01:57      阅读:80      评论:0      收藏:0      [点我收藏+]

标签:

No.164 Maximum Gap

Given an unsorted array, find the maximum difference between the successive elements in its sorted form.

Try to solve it in linear time/space.

Return 0 if the array contains less than 2 elements.

You may assume all elements in the array are non-negative integers and fit in the 32-bit signed integer range.

题意理解:successive连续的
     输入:未排序数组,数组元素均为非负整数,在32位整数范围内
    输出:输出排序后连续元素的最大差值
    要求:线性时间/空间
法一:直观做法就是排序,之后一次比较,但时间空间效率不高!!!

技术分享
 1 class Solution
 2 {
 3 public:
 4     int    maximumGap(vector<int> &nums)
 5     {//题意理解:successive连续的
 6      //输入:未排序数组,数组元素均为非负整数,在32位整数范围内
 7      //输出:输出排序后连续元素的最大差值
 8      //要求:线性时间/空间
 9      //直观做法就是排序,之后一次比较,但时间空间效率不高!!!
10         int count = nums.size();
11         if(count <2)
12             return 0;
13         sort(nums.begin(),nums.end());
14         int maxGap = nums[1] - nums[0];
15 
16         for(int i=2; i<count; i++)
17         {
18             if(maxGap < nums[i]-nums[i-1])
19                 maxGap = nums[i]-nums[i-1];
20         }
21         return maxGap;
22     }
23 };
View Code


法二:

官方提示: 表示没有理解!!!

Suppose there are N elements and they range from A to B.

Then the maximum gap will be no smaller than ceiling[(B - A) / (N - 1)]

Let the length of a bucket to be len = ceiling[(B - A) / (N - 1)], then we will have at most num = (B - A) / len + 1 of bucket

for any number K in the array, we can easily find out which bucket it belongs by calculating loc = (K - A) / len and therefore maintain the maximum and minimum elements in each bucket.

Since the maximum difference between elements in the same buckets will be at most len - 1, so the final answer will not be taken from two elements in the same buckets.

For each non-empty buckets p, find the next non-empty buckets q, then q.min - p.max could be the potential answer to the question. Return the maximum of all those values.

 

 

参考:http://www.cnblogs.com/ganganloveu/p/4162290.html

No.164 Maximum Gap

标签:

原文地址:http://www.cnblogs.com/dreamrun/p/4561438.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!