Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4},
A solution set is:
(-1, 0, 1)
(-1, -1, 2)
分析:根据题意,我们可以要找出三个数相加等于0的这样的一个集合,所以采用二维数组存储。
首先抽取一个变量出来,该变量从左往右递归遍历,递归的同时设置两个变量,让其一个从第一个变量的右边,一个从数组的末端,同步的向中间遍历,有点类似于快速排序的判断方式,
依次递归,直到第一个变量条件终止为止。
Code(c++):
class Solution {
public:
vector<vector<int> > threeSum(vector<int> &nums) {
vector<vector<int> > result;
sort(nums.begin(), nums.end());
for(int i = 0; i < nums.size(); i++){
if(i > 0 && nums[i] == nums[i-1]) continue;
threeNumber(nums, result, i);
}
return result;
}
//return vector<vector<int> > results
void threeNumber(vector<int> &nums, vector<vector<int> > &results, int curIndex) {
int i = curIndex + 1;
int j = nums.size()-1;
while(i < j){
if(nums[curIndex] + nums[i] + nums[j] < 0) i++;
else if(nums[curIndex] + nums[i] + nums[j] > 0) j--;
else{
vector<int> v;
v.push_back(nums[curIndex]);
v.push_back(nums[i]);
v.push_back(nums[j]);
results.push_back(v);
i++; j--;
while(i < j && nums[i]==nums[i - 1]) i++;
while(j > i && nums[j] == nums[j + 1]) j--;
}
}
}
};
原文地址:http://blog.csdn.net/dream_angel_z/article/details/46430345