标签:
From project’s home page:
psutil (python system and process utilities) is a cross-platform library for retrieving information on running processes and system utilization (CPU, memory, disks, network) in Python. It is useful mainly for system monitoring, profiling and limiting process resources and management of running processes. It implements many functionalities offered by command line tools such as: ps, top, lsof, netstat, ifconfig, who, df, kill, free, nice, ionice, iostat, iotop, uptime, pidof, tty, taskset, pmap. It currently supports Linux, Windows, OSX, FreeBSD and Sun Solaris, both 32-bit and 64-bit architectures, with Python versions from 2.6 to 3.4 (users of Python 2.4 and 2.5 may use 2.1.3 version). PyPy is also known to work.
The psutil documentation you’re reading is distributed as a single HTML page.
Return a list of current running PIDs. To iterate over all processes process_iter() should be preferred.
Check whether the given PID exists in the current process list. This is faster than doing "pid in psutil.pids()" and should be preferred.
Return an iterator yielding a Process class instance for all running processes on the local machine. Every instance is only created once and then cached into an internal table which is updated every time an element is yielded. Cached Process instances are checked for identity so that you’re safe in case a PID has been reused by another process, in which case the cached instance is updated. This is should be preferred over psutil.pids() for iterating over processes. Sorting order in which processes are returned is based on their PID. Example usage:
import psutil
for proc in psutil.process_iter():
try:
pinfo = proc.as_dict(attrs=[‘pid‘, ‘name‘])
except psutil.NoSuchProcess:
pass
else:
print(pinfo)
Convenience function which waits for a list of Process instances to terminate. Return a (gone, alive) tuple indicating which processes are gone and which ones are still alive. The gone ones will have a new returncode attribute indicating process exit status (it may be None). callback is a function which gets called every time a process terminates (a Process instance is passed as callback argument). Function will return as soon as all processes terminate or when timeout occurs. Tipical use case is:
Example:
import psutil
def on_terminate(proc):
print("process {} terminated".format(proc))
procs = [...] # a list of Process instances
for p in procs:
p.terminate()
gone, alive = wait_procs(procs, timeout=3, callback=on_terminate)
for p in alive:
p.kill()
Base exception class. All other exceptions inherit from this one.
Raised by Process class methods when no process with the given pid is found in the current process list or when a process no longer exists. “name” is the name the process had before disappearing and gets set only if Process.name() was previosly called.
Raised by Process class methods when permission to perform an action is denied. “name” is the name of the process (may be None).
Raised by Process.wait() if timeout expires and process is still alive.
Represents an OS process with the given pid. If pid is omitted current process pid (os.getpid()) is used. Raise NoSuchProcess if pid does not exist. When accessing methods of this class always be prepared to catch NoSuchProcess and AccessDenied exceptions. hash() builtin can be used against instances of this class in order to identify a process univocally over time (the hash is determined by mixing process PID and creation time). As such it can also be used with set()s.
Warning
the way this class is bound to a process is uniquely via its PID. That means that if the Process instance is old enough and the PID has been reused by another process in the meantime you might end up interacting with another process. The only exceptions for which process identity is pre-emptively checked (via PID + creation time) and guaranteed are for nice() (set), ionice() (set), cpu_affinity() (set), rlimit() (set), children(), parent(), suspend() resume(), send_signal(),terminate(), and kill() methods. To prevent this problem for all other methods you can use is_running() before querying the process or use process_iter() in case you’re iterating over all processes.
The process PID.
The process parent pid. On Windows the return value is cached after first call.
The process name. The return value is cached after first call.
The process executable as an absolute path. On some systems this may also be an empty string. The return value is cached after first call.
The command line this process has been called with.
The process creation time as a floating point number expressed in seconds since the epoch, in UTC. The return value is cached after first call.
>>> import psutil, datetime
>>> p = psutil.Process()
>>> p.create_time()
1307289803.47
>>> datetime.datetime.fromtimestamp(p.create_time()).strftime("%Y-%m-%d %H:%M:%S")
‘2011-03-05 18:03:52‘
Utility method returning process information as a hashable dictionary. If attrs is specified it must be a list of strings reflecting available Process class’s attribute names (e.g. [‘cpu_times‘, ‘name‘]) else all public (read only) attributes are assumed. ad_value is the value which gets assigned to a dict key in case AccessDeniedexception is raised when retrieving that particular process information.
>>> import psutil
>>> p = psutil.Process()
>>> p.as_dict(attrs=[‘pid‘, ‘name‘, ‘username‘])
{‘username‘: ‘giampaolo‘, ‘pid‘: 12366, ‘name‘: ‘python‘}
Utility method which returns the parent process as a Process object pre-emptively checking whether PID has been reused. If no parent PID is known return None.
The current process status as a string. The returned string is one of the psutil.STATUS_* constants.
The process current working directory as an absolute path.
The name of the user that owns the process. On UNIX this is calculated by using real process uid.
The real, effective and saved user ids of this process as a nameduple. This is the same as os.getresuid() but can be used for every process PID.
Availability: UNIX
The real, effective and saved group ids of this process as a nameduple. This is the same as os.getresgid() but can be used for every process PID.
Availability: UNIX
The terminal associated with this process, if any, else None. This is similar to “tty” command but can be used for every process PID.
Availability: UNIX
Get or set process niceness (priority). On UNIX this is a number which usually goes from -20 to 20. The higher the nice value, the lower the priority of the process.
>>> import psutil
>>> p = psutil.Process()
>>> p.nice(10) # set
>>> p.nice() # get
10
>>>
On Windows this is available as well by using GetPriorityClass and SetPriorityClass and value is one of the psutil.*_PRIORITY_CLASS constants. Example which increases process priority on Windows:
>>> p.nice(psutil.HIGH_PRIORITY_CLASS)
Starting from Python 3.3 this same functionality is available as os.getpriority() and os.setpriority().
Get or set process I/O niceness (priority). On Linux ioclass is one of the psutil.IOPRIO_CLASS_* constants. value is a number which goes from 0 to 7. The higher the value, the lower the I/O priority of the process. On Windows only ioclass is used and it can be set to 2 (normal), 1 (low) or 0 (very low). The example below sets IDLE priority class for the current process, meaning it will only get I/O time when no other process needs the disk:
>>> import psutil
>>> p = psutil.Process()
>>> p.ionice(psutil.IOPRIO_CLASS_IDLE) # set
>>> p.ionice() # get
pionice(ioclass=3, value=0)
>>>
On Windows only ioclass is used and it can be set to 2 (normal), 1 (low) or 0 (very low).
Availability: Linux and Windows > Vista
Get or set process resource limits (see man prlimit). resource is one of the psutil.RLIMIT_* constants. limits is a (soft, hard) tuple. This is the same asresource.getrlimit() and resource.setrlimit() but can be used for every process PID and only on Linux. Example:
>>> import psutil
>>> p = psutil.Process()
>>> # process may open no more than 128 file descriptors
>>> p.rlimit(psutil.RLIMIT_NOFILE, (128, 128))
>>> # process may create files no bigger than 1024 bytes
>>> p.rlimit(psutil.RLIMIT_FSIZE, (1024, 1024))
>>> # get
>>> p.rlimit(psutil.RLIMIT_FSIZE)
(1024, 1024)
>>>
Availability: Linux
Return process I/O statistics as a namedtuple including the number of read and write operations performed by the process and the amount of bytes read and written. For Linux refer to /proc filesysem documentation. On BSD there’s apparently no way to retrieve bytes counters, hence -1 is returned for read_bytes andwrite_bytes fields. OSX is not supported.
>>> import psutil
>>> p = psutil.Process()
>>> p.io_counters()
pio(read_count=454556, write_count=3456, read_bytes=110592, write_bytes=0)
Availability: all platforms except OSX
The number voluntary and involuntary context switches performed by this process.
The number of file descriptors used by this process.
Availability: UNIX
The number of handles used by this process.
Availability: Windows
The number of threads currently used by this process.
Return threads opened by process as a list of namedtuples including thread id and thread CPU times (user/system).
Return a tuple whose values are process CPU user and system times which means the amount of time expressed in seconds that a process has spent in user / system mode. This is similar to os.times() but can be used for every process PID.
Return a float representing the process CPU utilization as a percentage. When interval is > 0.0 compares process times to system CPU times elapsed before and after the interval (blocking). When interval is 0.0 or None compares process times to system CPU times elapsed since last call, returning immediately. That means the first time this is called it will return a meaningless 0.0 value which you are supposed to ignore. In this case is recommended for accuracy that this function be called a second time with at least 0.1 seconds between calls. Example:
>>> import psutil
>>> p = psutil.Process()
>>>
>>> # blocking
>>> p.cpu_percent(interval=1)
2.0
>>> # non-blocking (percentage since last call)
>>> p.cpu_percent(interval=None)
2.9
>>>
Note
a percentage > 100 is legitimate as it can result from a process with multiple threads running on different CPU cores.
Warning
the first time this method is called with interval = 0.0 or None it will return a meaningless 0.0 value which you are supposed to ignore.
Get or set process current CPU affinity. CPU affinity consists in telling the OS to run a certain process on a limited set of CPUs only. The number of eligible CPUs can be obtained with list(range(psutil.cpu_count())).
>>> import psutil
>>> psutil.cpu_count()
4
>>> p = psutil.Process()
>>> p.cpu_affinity() # get
[0, 1, 2, 3]
>>> p.cpu_affinity([0]) # set; from now on, process will run on CPU #0 only
>>> p.cpu_affinity()
[0]
>>>
>>> # reset affinity against all CPUs
>>> all_cpus = list(range(psutil.cpu_count()))
>>> p.cpu_affinity(all_cpus)
>>>
Availability: Linux, Windows, BSD
Changed in version 2.2.0: added support for FreeBSD
Return a tuple representing RSS (Resident Set Size) and VMS (Virtual Memory Size) in bytes. On UNIX rss and vms are the same values shown by ps. On Windowsrss and vms refer to “Mem Usage” and “VM Size” columns of taskmgr.exe. For more detailed memory stats use memory_info_ex().
Return a namedtuple with variable fields depending on the platform representing extended memory information about the process. All numbers are expressed in bytes.
Linux | OSX | BSD | SunOS | Windows |
---|---|---|---|---|
rss | rss | rss | rss | num_page_faults |
vms | vms | vms | vms | peak_wset |
shared | pfaults | text | wset | |
text | pageins | data | peak_paged_pool | |
lib | stack | paged_pool | ||
data | peak_nonpaged_pool | |||
dirty | nonpaged_pool | |||
pagefile | ||||
peak_pagefile | ||||
private |
Windows metrics are extracted from PROCESS_MEMORY_COUNTERS_EX structure. Example on Linux:
>>> import psutil
>>> p = psutil.Process()
>>> p.memory_info_ex()
pextmem(rss=15491072, vms=84025344, shared=5206016, text=2555904, lib=0, data=9891840, dirty=0)
Compare physical system memory to process resident memory (RSS) and calculate process memory utilization as a percentage.
Return process’s mapped memory regions as a list of nameduples whose fields are variable depending on the platform. As such, portable applications should rely on namedtuple’s path and rss fields only. This method is useful to obtain a detailed representation of process memory usage as explained here. If grouped is Truethe mapped regions with the same path are grouped together and the different memory fields are summed. If grouped is False every mapped region is shown as a single entity and the namedtuple will also include the mapped region’s address space (addr) and permission set (perms). See examples/pmap.py for an example application.
>>> import psutil
>>> p = psutil.Process()
>>> p.memory_maps()
[pmmap_grouped(path=‘/lib/x8664-linux-gnu/libutil-2.15.so‘, rss=16384, anonymous=8192, swap=0),
pmmap_grouped(path=‘/lib/x8664-linux-gnu/libc-2.15.so‘, rss=6384, anonymous=15, swap=0),
pmmap_grouped(path=‘/lib/x8664-linux-gnu/libcrypto.so.0.1‘, rss=34124, anonymous=1245, swap=0),
pmmap_grouped(path=‘[heap]‘, rss=54653, anonymous=8192, swap=0),
pmmap_grouped(path=‘[stack]‘, rss=1542, anonymous=166, swap=0),
...]
>>>
Return the children of this process as a list of Process objects, pre-emptively checking whether PID has been reused. If recursive is True return all the parent descendants. Example assuming A == this process:
A ─┐
│
├─ B (child) ─┐
│ └─ X (grandchild) ─┐
│ └─ Y (great grandchild)
├─ C (child)
└─ D (child)
>>> p.children()
B, C, D
>>> p.children(recursive=True)
B, X, Y, C, D
Note that in the example above if process X disappears process Y won’t be returned either as the reference to process A is lost.
Return regular files opened by process as a list of namedtuples including the absolute file name and the file descriptor number (on Windows this is always -1). Example:
>>> import psutil
>>> f = open(‘file.ext‘, ‘w‘)
>>> p = psutil.Process()
>>> p.open_files()
[popenfile(path=‘/home/giampaolo/svn/psutil/file.ext‘, fd=3)]
Return socket connections opened by process as a list of namedutples. To get system-wide connections use psutil.net_connections(). Every namedtuple provides 6 attributes:
The kind parameter is a string which filters for connections that fit the following criteria:
Kind value | Connections using |
---|---|
“inet” | IPv4 and IPv6 |
“inet4” | IPv4 |
“inet6” | IPv6 |
“tcp” | TCP |
“tcp4” | TCP over IPv4 |
“tcp6” | TCP over IPv6 |
“udp” | UDP |
“udp4” | UDP over IPv4 |
“udp6” | UDP over IPv6 |
“unix” | UNIX socket (both UDP and TCP protocols) |
“all” | the sum of all the possible families and protocols |
Example:
>>> import psutil
>>> p = psutil.Process(1694)
>>> p.name()
‘firefox‘
>>> p.connections()
[pconn(fd=115, family=2, type=1, laddr=(‘10.0.0.1‘, 48776), raddr=(‘93.186.135.91‘, 80), status=‘ESTABLISHED‘),
pconn(fd=117, family=2, type=1, laddr=(‘10.0.0.1‘, 43761), raddr=(‘72.14.234.100‘, 80), status=‘CLOSING‘),
pconn(fd=119, family=2, type=1, laddr=(‘10.0.0.1‘, 60759), raddr=(‘72.14.234.104‘, 80), status=‘ESTABLISHED‘),
pconn(fd=123, family=2, type=1, laddr=(‘10.0.0.1‘, 51314), raddr=(‘72.14.234.83‘, 443), status=‘SYN_SENT‘)]
Return whether the current process is running in the current process list. This is reliable also in case the process is gone and its PID reused by another process, therefore it must be preferred over doing psutil.pid_exists(p.pid).
Note
this will return True also if the process is a zombie (p.status() == psutil.STATUS_ZOMBIE).
Send a signal to process (see signal module constants) pre-emptively checking whether PID has been reused. This is the same as os.kill(pid, sig). On Windows only SIGTERM is valid and is treated as an alias for kill().
Suspend process execution with SIGSTOP signal pre-emptively checking whether PID has been reused. On UNIX this is the same as os.kill(pid, signal.SIGSTOP). On Windows this is done by suspending all process threads execution.
Resume process execution with SIGCONT signal pre-emptively checking whether PID has been reused. On UNIX this is the same as os.kill(pid, signal.SIGCONT). On Windows this is done by resuming all process threads execution.
Terminate the process with SIGTERM signal pre-emptively checking whether PID has been reused. On UNIX this is the same as os.kill(pid, signal.SIGTERM). On Windows this is an alias for kill().
Kill the current process by using SIGKILL signal pre-emptively checking whether PID has been reused. On UNIX this is the same as os.kill(pid, signal.SIGKILL). On Windows this is done by using TerminateProcess.
Wait for process termination and if the process is a children of the current one also return the exit code, else None. On Windows there’s no such limitation (exit code is always returned). If the process is already terminated immediately return None instead of raising NoSuchProcess. If timeout is specified and process is still alive raise TimeoutExpired exception. It can also be used in a non-blocking fashion by specifying timeout=0 in which case it will either return immediately or raiseTimeoutExpired. To wait for multiple processes use psutil.wait_procs().
A more convenient interface to stdlib subprocess.Popen. It starts a sub process and deals with it exactly as when using subprocess.Popen but in addition it also provides all the methods of psutil.Process class in a single interface. For method names common to both classes such as send_signal(), terminate() and kill()psutil.Process implementation takes precedence. For a complete documentation refer to subprocess module documentation.
Note
Unlike subprocess.Popen this class pre-emptively checks wheter PID has been reused on send_signal(), terminate() and kill() so that you don’t accidentally terminate another process, fixing http://bugs.python.org/issue6973.
>>> import psutil
>>> from subprocess import PIPE
>>>
>>> p = psutil.Popen(["/usr/bin/python", "-c", "print(‘hello‘)"], stdout=PIPE)
>>> p.name()
‘python‘
>>> p.username()
‘giampaolo‘
>>> p.communicate()
(‘hello\n‘, None)
>>> p.wait(timeout=2)
0
>>>
A set of strings representing the status of a process. Returned by psutil.Process.status().
A set of strings representing the status of a TCP connection. Returned by psutil.Process.connections() (status field).
A set of integers representing the priority of a process on Windows (see MSDN documentation). They can be used in conjunction with psutil.Process.nice() to get or set process priority.
Availability: Windows
A set of integers representing the I/O priority of a process on Linux. They can be used in conjunction with psutil.Process.ionice() to get or set process I/O priority.IOPRIO_CLASS_NONE and IOPRIO_CLASS_BE (best effort) is the default for any process that hasn’t set a specific I/O priority. IOPRIO_CLASS_RT (real time) means the process is given first access to the disk, regardless of what else is going on in the system. IOPRIO_CLASS_IDLE means the process will get I/O time when no-one else needs the disk. For further information refer to manuals of ionice command line utility or ioprio_get system call.
Availability: Linux
Constants used for getting and setting process resource limits to be used in conjunction with psutil.Process.rlimit(). See man prlimit for futher information.
Availability: Linux
标签:
原文地址:http://www.cnblogs.com/hushaojun/p/4566101.html