5 4 1 2 40 1 4 20 2 4 20 2 3 30 3 4 10
50
题大意:给出边数N,点数M,每条边都是单向的,问从1点到M的最大流是多少。
方法一:ISAP
#include<stdio.h> #include<string.h> #include<queue> using namespace std; #define captype __int64 const int MAXN = 100010; const int MAXM = 400010; const int INF = 1<<30; struct EDG{ int to,next; captype cap,flow; } edg[MAXM]; int eid,head[MAXN]; int gap[MAXN]; //每种距离(或可认为是高度)点的个数 int dis[MAXN]; //每个点到终点eNode 的最短距离 int cur[MAXN]; //cur[u] 表示从u点出发可流经 cur[u] 号边 void init(){ eid=0; memset(head,-1,sizeof(head)); } //有向边 三个参数,无向边4个参数 void addEdg(int u,int v,captype c,captype rc=0){ edg[eid].to=v; edg[eid].next=head[u]; edg[eid].cap=c; edg[eid].flow=0; head[u]=eid++; edg[eid].to=u; edg[eid].next=head[v]; edg[eid].cap=rc; edg[eid].flow=0; head[v]=eid++; } //预处理eNode点到所有点的最短距离 void BFS(int sNode, int eNode){ queue<int>q; memset(gap,0,sizeof(gap)); memset(dis,-1,sizeof(dis)); gap[0]=1; dis[eNode]=0; q.push(eNode); while(!q.empty()){ int u=q.front(); q.pop(); for(int i=head[u]; i!=-1; i=edg[i].next){ int v=edg[i].to; if(dis[v]==-1){ dis[v]=dis[u]+1; gap[dis[v]]++; q.push(v); } } } } int S[MAXN]; //路径栈,存的是边的id号 captype maxFlow_sap(int sNode,int eNode, int n){ BFS(sNode, eNode); //预处理eNode到所有点的最短距离 if(dis[sNode]==-1) return 0; //源点到不可到达汇点 memcpy(cur,head,sizeof(head)); int top=0; //栈顶 captype ans=0; //最大流 int u=sNode; while(dis[sNode]<n){ //判断从sNode点有没有流向下一个相邻的点 if(u==eNode){ //找到一条可增流的路 captype Min=INF ; int inser; for(int i=0; i<top; i++) //从这条可增流的路找到最多可增的流量Min if(Min>edg[S[i]].cap-edg[S[i]].flow){ Min=edg[S[i]].cap-edg[S[i]].flow; inser=i; } for(int i=0; i<top; i++){ edg[S[i]].flow+=Min; edg[S[i]^1].flow-=Min; //可回流的边的流量 } ans+=Min; top=inser; //从这条可增流的路中的流量瓶颈 边的上一条边那里是可以再增流的,所以只从断流量瓶颈 边裁断 u=edg[S[top]^1].to; //流量瓶颈 边的起始点 continue; } bool flag = false; //判断能否从u点出发可往相邻点流 int v; for(int i=cur[u]; i!=-1; i=edg[i].next){ v=edg[i].to; if(edg[i].cap-edg[i].flow>0 && dis[u]==dis[v]+1){ flag=true; cur[u]=i; break; } } if(flag){ S[top++] = cur[u]; //加入一条边 u=v; continue; } //如果上面没有找到一个可流的相邻点,则改变出发点u的距离(也可认为是高度)为相邻可流点的最小距离+1 int Mind= n; for(int i=head[u]; i!=-1; i=edg[i].next){ if(edg[i].cap-edg[i].flow>0 && Mind>dis[edg[i].to]){ Mind=dis[edg[i].to]; cur[u]=i; }} gap[dis[u]]--; if(gap[dis[u]]==0) return ans; //当dis[u]这种距离的点没有了,也就不可能从源点出发找到一条增广流路径 //因为汇点到当前点的距离只有一种,那么从源点到汇点必然经过当前点,然而当前点又没能找到可流向的点,那么必然断流 dis[u]=Mind+1; //如果找到一个可流的相邻点,则距离为相邻点距离+1,如果找不到,则为n+1 gap[dis[u]]++; if(u!=sNode) u=edg[S[--top]^1].to; //退一条边 } return ans; } int main(){ int n,m,u,v; captype c; while(scanf("%d%d",&m,&n)>0){ init(); while(m--){ scanf("%d%d%I64d",&u,&v,&c); addEdg(u,v,c); } printf("%I64d\n",maxFlow_sap(1,n,n)); } }方法二:压入重标记push_relabel
#include<stdio.h> #include<string.h> #include<queue> using namespace std; #define captype __int64 const int N = 210; const int MAX= 1<<30; struct EDG{ int to,nxt; captype c; //每条边的残留量 }edg[N*N]; int head[N],eid; captype vf[N]; //顶点的剩余流量 int h[N]; //顶点的高度 //int n; //顶点个总个数,包含源点与汇点 int min(int a,int b){return a>b?b:a; } void init(){ memset(head,-1,sizeof(head)); eid=0; } //添加 有向边 void addEdg(int u , int v, captype c){ edg[eid].to=v; edg[eid].nxt=head[u]; edg[eid].c=c; head[u]=eid++; edg[eid].to=u; edg[eid].nxt=head[v]; edg[eid].c=0; head[v]=eid++; } captype maxFlow(int sNode,int eNode,int n){//源点与汇点 captype minh,ans=0; queue<int>q; memset(h,0,sizeof(h)); memset(vf,0,sizeof(vf)); h[sNode]=n+1; //源点的高度 vf[sNode]=MAX; //源点的余流 q.push(sNode); while(!q.empty()){ int u=q.front(); q.pop(); minh=MAX; for(int i=head[u]; i!=-1; i=edg[i].nxt){ int v=edg[i].to; captype fp; if(edg[i].c<vf[u])fp=edg[i].c; else fp=vf[u]; if(fp>0 ){ minh=min(minh, h[v]); if(u==sNode || h[u]==h[v]+1){ edg[i].c-=fp; edg[i^1].c+=fp; //反向边,给个反回的通道 vf[u]-=fp; vf[v]+=fp; if(v==eNode) ans+=fp; //当到达汇点时,就加入最大流中 if(v!=sNode && v!=eNode ) //只有即不是源点,也不是汇点时才能进队列 q.push(v); } } if(vf[u]==0) break; //如果顶点的余流为0,则可以跳出for循环 } //如果不是源点(也非汇点),且顶点仍有余流,则重新标记 高度+1 入队 //这里赋值为最低的相邻顶点的高度高一个单位,也可以简单的在原高度+1 if(u!=sNode && vf[u]>0){ h[u] = minh + 1; q.push(u); } } return ans; } int main(){ int n,m,u,v; captype c; while(scanf("%d%d",&m,&n)>0){ init(); while(m--){ scanf("%d%d%I64d",&u,&v,&c); addEdg(u,v,c); } printf("%I64d\n",maxFlow(1,n,n)); } }方法三:EK
#include<stdio.h> #include<string.h> #include<queue> using namespace std; #define captype __int64 const int N = 205; captype cap[N][N],f[N][N],rest[N]; int sNode,eNode,pre[N]; void init(){ memset(f,0,sizeof(f)); memset(cap,0,sizeof(cap)); } bool searchPath(int n){//找一条增广路 bool vist[N]={0}; queue<int>q; int u,v; u=sNode; vist[u]=1; pre[u]=u; rest[u]=1<<30; q.push(u); while(!q.empty()){ u=q.front(); q.pop(); for(v=1; v<=n; v++) if(!vist[v]&&cap[u][v]-f[u][v]>0) { vist[v]=1; pre[v]=u; if(cap[u][v]-f[u][v]>rest[u]) rest[v]=rest[u]; else rest[v]=cap[u][v]-f[u][v]; if(v==eNode) return true; q.push(v); } } return false; } captype maxflow(int s,int t,int n){ captype ans=0; sNode=s; eNode=t; while(searchPath(n)){ ans+=rest[eNode]; int v=eNode; while(v!=sNode){ int u=pre[v]; f[u][v]+=rest[eNode]; f[v][u]-=rest[eNode];//给一个回流的机会 v=u; } } return ans; } int main(){ int n,m,u,v; captype c; while(scanf("%d%d",&m,&n)>0){ init(); while(m--){ scanf("%d%d%I64d",&u,&v,&c); cap[u][v]+=c; } printf("%I64d\n",maxflow(1,n,n)); } }
HDU 1532Drainage Ditches(最大流模板题 ISAP)
原文地址:http://blog.csdn.net/u010372095/article/details/46446037