标签:
问题描述
K-lucky-number is defined as add up the number of each bit is a multiple of K.for example, 24 is a 3-lucky-number,because 2+4=6, 6 is a multiple of 3.Now, there is a closed interval from L to R, please output the sum of squares of the K-lucky-number in this interval.
输入
The first line of input is the number of test cases T.
For each test case have one line contains three integer L, R, K(0<L<=R<10^9, 1<k<30).
输出
For each test case output the answer the sum of squares of the K-lucky-number in this interval and mod 1000000007.
样例输入
2
1 10 6
100 1000 7
样例输出
36
46057247
有点6、= =
#include <iostream> #include <cstring> #include <algorithm> #include <cstdio> #include <cmath> using namespace std; #define ll long long #define MOD 1000000007 #define INF 0x3f3f3f3f #define N 50 struct Node{ ll cnt,sum,sqsum; //个数,和,平方和 }; int l,r,k; int bit[N]; ll p10[N]; Node dp[N][N]; void init() { p10[0]=1; for(int i=1;i<=20;i++) p10[i]=p10[i-1]*10%MOD; } Node dfs(int pos,int mod,bool limit) { Node ans; ans.cnt=ans.sum=ans.sqsum=0; if(pos==-1){ if(!mod) ans.cnt=1; else ans.cnt=0; return ans; } if(!limit && dp[pos][mod].sum!=-1) return dp[pos][mod]; int end=limit?bit[pos]:9; for(int i=0;i<=end;i++){ Node tmp=dfs(pos-1,(mod+i)%k,(i==end)&&limit); ans.cnt=(ans.cnt+tmp.cnt)%MOD; ans.sum=(ans.sum + tmp.sum + i*p10[pos]%MOD*tmp.cnt%MOD)%MOD; ans.sqsum=(ans.sqsum + i*i*p10[pos]%MOD*p10[pos]%MOD*tmp.cnt%MOD + 2*i*p10[pos]%MOD*tmp.sum%MOD + tmp.sqsum)%MOD; } if(!limit) dp[pos][mod]=ans; return ans; } ll solve(int n) { int len=0; while(n){ bit[len++]=n%10; n/=10; } return dfs(len-1,0,1).sqsum; } int main() { init(); int T; scanf("%d",&T); while(T--) { memset(dp,-1,sizeof(dp)); scanf("%d%d%d",&l,&r,&k); printf("%lld\n",(solve(r)-solve(l-1)+MOD)%MOD); } return 0; }
标签:
原文地址:http://www.cnblogs.com/hate13/p/4571673.html