标签:
题目要求:
Given a string containing just the characters ‘(‘
and ‘)‘
, find the length of the longest valid (well-formed) parentheses substring.
For "(()"
, the longest valid parentheses substring is "()"
, which has length = 2.
Another example is ")()())"
, where the longest valid parentheses substring is "()()"
, which has length = 4.
此文的动态规划解法参考自一博文:
DP[i]:以s[i-1]为结尾的longest valid parentheses substring的长度。
s[i] = ‘(‘:
DP[i] = 0
s[i] = ‘)‘:找i前一个字符的最长括号串DP[i]的前一个字符 j = i-2-DP[i-1]
DP[i] = DP[i-1] + 2 + DP[j],如果j >=0,且s[j] = ‘(‘
DP[i] = 0,如果j<0,或s[j] = ‘)‘
......... ( x x x x )
j i-2 i-1
证明:不存在j‘ < j,且s[j‘ : i]为valid parentheses substring。
假如存在这样的j‘,则s[j‘+1 : i-1]也valid。那么对于i-1来说:
( x x x x x
j‘ j‘+1 i-1
这种情况下,i-1是不可能有比S[j‘+1 : i-1]更长的valid parentheses substring的。
显然自左向右,且DP[0] = 0
具体代码如下:
1 class Solution { 2 public: 3 int longestValidParentheses(string s) { 4 int sz = s.size(); 5 if(sz < 2) 6 return 0; 7 8 int maxLen = 0; 9 vector<int> dp(sz + 1, 0); 10 for(int i = 1; i < sz + 1; i++) 11 { 12 int j = i - 2 - dp[i - 1]; 13 if(s[i - 1] == ‘(‘ || j < 0 || s[j] == ‘)‘) 14 dp[i] = 0; 15 else 16 { 17 dp[i] = dp[i - 1] + 2 + dp[j]; 18 maxLen = max(maxLen, dp[i]); 19 } 20 } 21 22 return maxLen; 23 } 24 };
LeetCode之“动态规划”:Longest Valid Parentheses
标签:
原文地址:http://www.cnblogs.com/xiehongfeng100/p/4572783.html