码迷,mamicode.com
首页 > 其他好文 > 详细

UFLDL教程笔记及练习答案六(稀疏编码与稀疏编码自编码表达)

时间:2015-06-14 10:59:51      阅读:236      评论:0      收藏:0      [点我收藏+]

标签:稀疏编码   深度学习   

稀疏编码(SparseCoding)

sparse coding也是deep learning中一个重要的分支,同样能够提取出数据集很好的特征(稀疏的)。选择使用具有稀疏性的分量来表示我们的输入数据是有原因的,因为绝大多数的感官数据,比如自然图像,可以被表示成少量基本元素的叠加,在图像中这些基本元素可以是面或者线。

稀疏编码算法的目的就是找到一组基向量技术分享使得我们能将输入向量x表示成这些基向量的线性组合:

                                   技术分享

这里构成的基向量要求是超完备的,即要求k大于n,这样的方程就大多情况会有无穷多个解,此时我们给它加入一个稀疏性的限制,最终的优化公式变成了如下形式:

                   技术分享

其中S(ai)就是稀疏惩罚项,可以是L0或者L1范数,L1范数和L0范数都可以表示稀疏编码,L1范数是L0范数的最优凸近似,但是L1因具有比L0更好的优化求解特性而被广泛应用。

稀疏编码自编码表达:

将稀疏编码用到深度学习中,用于提取数据集良好的稀疏特征,设A为超完备的基向量,s表示输入数据最后的稀疏特征(也就是稀疏编码中的稀疏系数),这样就可以表示成X = A*s

其实这里的A就等同于稀疏自编码中的W2,而s就是隐层的结点值。(当具有很多样本的时候,s就是一个矩阵,每一列表示的是一个样本的稀疏特征值)

最终的优化函数变成了:

                              技术分享

优化步骤为:

                                                  技术分享

可以采用以下两个trick来提高最后的迭代速度和精度。

(1)将样本表示成良好的“迷你块”,比如你有10000个样本,我们可以每次只随机选择2000mini_patches进行迭代,这样不仅提高了迭代的速度,也提升了收敛的速度。

(2)良好的s初始化。因为我们的目标是X=As,因此交叉迭代优化的过程中,在A给定的情况下,我们可以将s初始化为s=AT*X,但这样可能会导致稀疏性的缺失,我们在做一个规范,这里其中的s的行数就等于A列数,然后用s的每个元素除以其所在A的那一列向量的2范数。

 技术分享 其中Ar表示矩阵A的第r列。这样对s做规范化处理就是为了保持较小的稀疏惩罚值。<个人认为UFLDL教程中该处A的下标是错误的>

因此最后的优化算法步骤表示为:

                             技术分享

注意:以上对sA采用交叉迭代优化,其中我们会发现分别对sA求导的时候,发现可以直接得出A的解析形式的解,因此在优化A的时候直接给出其解析形式的解就可以了,而s我们无法给出其解析形式的解,就需要用梯度迭代等无约束的优化问题了。

测试:当有一个新的样本x,我们需要用以上训练集得到的A来优化以上cost函数得到s就是该样本的稀疏特征。这样相比之前的前馈网络的,每次对新的数据样本进行“编码”,我们必须再次执行优化过程来得到所需的系数。

注:教程中拓扑稀疏编码的内容我还没有弄明白是如何得到groupMatrix的,这里就不误导大家了。


练习答案:

以下对grad的求解可以参看这篇bloghttp://www.cnblogs.com/tornadomeet/archive/2013/04/16/3024292.html给出的推导结果。

Sparse_coding_exercise.m

 

%% CS294A/CS294W Sparse Coding Exercise

%  Instructions
%  ------------
% 
%  This file contains code that helps you get started on the
%  sparse coding exercise. In this exercise, you will need to modify
%  sparseCodingFeatureCost.m and sparseCodingWeightCost.m. You will also
%  need to modify this file, sparseCodingExercise.m slightly.

% Add the paths to your earlier exercises if necessary
% addpath /path/to/solution

%%======================================================================
%% STEP 0: Initialization
%  Here we initialize some parameters used for the exercise.

numPatches = 20000;   % number of patches
numFeatures = 121;    % number of features to learn
patchDim = 8;         % patch dimension
visibleSize = patchDim * patchDim; 

% dimension of the grouping region (poolDim x poolDim) for topographic sparse coding
poolDim = 3;

% number of patches per batch
batchNumPatches = 2000; 

lambda = 5e-5;  % L1-regularisation parameter (on features)
epsilon = 1e-5; % L1-regularisation epsilon |x| ~ sqrt(x^2 + epsilon)
gamma = 1e-2;   % L2-regularisation parameter (on basis)

%%======================================================================
%% STEP 1: Sample patches

images = load('IMAGES.mat');
images = images.IMAGES;

patches = sampleIMAGES(images, patchDim, numPatches);
display_network(patches(:, 1:64));

%%======================================================================
%% STEP 2: Implement and check sparse coding cost functions
%  Implement the two sparse coding cost functions and check your gradients.
%  The two cost functions are
%  1) sparseCodingFeatureCost (in sparseCodingFeatureCost.m) for the features 
%     (used when optimizing for s, which is called featureMatrix in this exercise) 
%  2) sparseCodingWeightCost (in sparseCodingWeightCost.m) for the weights
%     (used when optimizing for A, which is called weightMatrix in this exericse)

% We reduce the number of features and number of patches for debugging
% numFeatures = 25;
% patches = patches(:, 1:5);
% numPatches = 5;

weightMatrix = randn(visibleSize, numFeatures) * 0.005;
featureMatrix = randn(numFeatures, numPatches) * 0.005;

%% STEP 2a: Implement and test weight cost
%  Implement sparseCodingWeightCost in sparseCodingWeightCost.m and check
%  the gradient

[cost, grad] = sparseCodingWeightCost(weightMatrix, featureMatrix, visibleSize, numFeatures, patches, gamma, lambda, epsilon);

numgrad = computeNumericalGradient( @(x) sparseCodingWeightCost(x, featureMatrix, visibleSize, numFeatures, patches, gamma, lambda, epsilon), weightMatrix(:) );
% Uncomment the blow line to display the numerical and analytic gradients side by side
% disp([numgrad grad]);     
diff = norm(numgrad-grad)/norm(numgrad+grad);
fprintf('Weight difference: %g\n', diff);
assert(diff < 1e-8, 'Weight difference too large. Check your weight cost function. ');

%% STEP 2b: Implement and test feature cost (non-topographic)
%  Implement sparseCodingFeatureCost in sparseCodingFeatureCost.m and check
%  the gradient. You may wish to implement the non-topographic version of
%  the cost function first, and extend it to the topographic version later.

% Set epsilon to a larger value so checking the gradient numerically makes sense
epsilon = 1e-2;

% We pass in the identity matrix as the grouping matrix, putting each
% feature in a group on its own.
groupMatrix = eye(numFeatures);

[cost, grad] = sparseCodingFeatureCost(weightMatrix, featureMatrix, visibleSize, numFeatures, patches, gamma, lambda, epsilon, groupMatrix);

numgrad = computeNumericalGradient( @(x) sparseCodingFeatureCost(weightMatrix, x, visibleSize, numFeatures, patches, gamma, lambda, epsilon, groupMatrix), featureMatrix(:) );
% Uncomment the blow line to display the numerical and analytic gradients side by side
% disp([numgrad grad]); 
diff = norm(numgrad-grad)/norm(numgrad+grad);
fprintf('Feature difference (non-topographic): %g\n', diff);
assert(diff < 1e-8, 'Feature difference too large. Check your feature cost function. ');

%% STEP 2c: Implement and test feature cost (topographic)
%  Implement sparseCodingFeatureCost in sparseCodingFeatureCost.m and check
%  the gradient. This time, we will pass a random grouping matrix in to
%  check if your costs and gradients are correct for the topographic
%  version.

% Set epsilon to a larger value so checking the gradient numerically makes sense
epsilon = 1e-2;

% This time we pass in a random grouping matrix to check if the grouping is
% correct.
groupMatrix = rand(100, numFeatures);

[cost, grad] = sparseCodingFeatureCost(weightMatrix, featureMatrix, visibleSize, numFeatures, patches, gamma, lambda, epsilon, groupMatrix);

numgrad = computeNumericalGradient( @(x) sparseCodingFeatureCost(weightMatrix, x, visibleSize, numFeatures, patches, gamma, lambda, epsilon, groupMatrix), featureMatrix(:) );
% Uncomment the blow line to display the numerical and analytic gradients side by side
% disp([numgrad grad]); 
diff = norm(numgrad-grad)/norm(numgrad+grad);
fprintf('Feature difference (topographic): %g\n', diff);
assert(diff < 1e-8, 'Feature difference too large. Check your feature cost function. ');

%%======================================================================
%% STEP 3: Iterative optimization
%  Once you have implemented the cost functions, you can now optimize for
%  the objective iteratively. The code to do the iterative optimization 
%  using mini-batching and good initialization of the features has already
%  been included for you. 
% 
%  However, you will still need to derive and fill in the analytic solution 
%  for optimizing the weight matrix given the features. 
%  Derive the solution and implement it in the code below, verify the
%  gradient as described in the instructions below, and then run the
%  iterative optimization.

% Initialize options for minFunc
options.Method = 'lbfgs';
options.display = 'off';
options.verbose = 0;

% Initialize matrices
weightMatrix = rand(visibleSize, numFeatures);
featureMatrix = rand(numFeatures, batchNumPatches);

% Initialize grouping matrix
assert(floor(sqrt(numFeatures)) ^2 == numFeatures, 'numFeatures should be a perfect square');
donutDim = floor(sqrt(numFeatures));
assert(donutDim * donutDim == numFeatures,'donutDim^2 must be equal to numFeatures');

groupMatrix = zeros(numFeatures, donutDim, donutDim);

groupNum = 1;     %% 获得拓扑稀疏编码   这段处理不太懂啊!!
for row = 1:donutDim
    for col = 1:donutDim
        groupMatrix(groupNum, 1:poolDim, 1:poolDim) = 1;
        groupNum = groupNum + 1;
        groupMatrix = circshift(groupMatrix, [0 0 -1]);
    end
    groupMatrix = circshift(groupMatrix, [0 -1, 0]);
end

groupMatrix = reshape(groupMatrix, numFeatures, numFeatures);
if isequal(questdlg('Initialize grouping matrix for topographic or non-topographic sparse coding?', 'Topographic/non-topographic?', 'Non-topographic', 'Topographic', 'Non-topographic'), 'Non-topographic')
    groupMatrix = eye(numFeatures);
end

% Initial batch
indices = randperm(numPatches);
indices = indices(1:batchNumPatches);
batchPatches = patches(:, indices);                           

fprintf('%6s%12s%12s%12s%12s\n','Iter', 'fObj','fResidue','fSparsity','fWeight');

for iteration = 1:200                                 %% 因为要交替优化直到最小化cost function, 所以才这样进行的
    error = weightMatrix * featureMatrix - batchPatches;
    error = sum(error(:) .^ 2) / batchNumPatches;
    
    fResidue = error;
    
    R = groupMatrix * (featureMatrix .^ 2);
    R = sqrt(R + epsilon);    
    fSparsity = lambda * sum(R(:));    
    
    fWeight = gamma * sum(weightMatrix(:) .^ 2);
    
    fprintf('  %4d  %10.4f  %10.4f  %10.4f  %10.4f\n', iteration, fResidue+fSparsity+fWeight, fResidue, fSparsity, fWeight)   %% 以上这部分可以不用的,只是为了显示最终的
               
    % Select a new batch
    indices = randperm(numPatches);   %% 重新挑选2000个样本用来进行训练
    indices = indices(1:batchNumPatches);
    batchPatches = patches(:, indices);         %%% 重新挑选的样本                 
    
    % Reinitialize featureMatrix with respect to the new batch
    featureMatrix = weightMatrix' * batchPatches;           %% trick 对featureMatrix(s)进行初始化 --技巧 方法
    normWM = sum(weightMatrix .^ 2)';                     %%%%% 也就是weightMatrix矩阵每列的平方和
    featureMatrix = bsxfun(@rdivide, featureMatrix, normWM);   %% featureMatrix除以上者
    
    % Optimize for feature matrix    
    options.maxIter = 20;   % 迭代20次,并对featureMatrix进行无约束优化
    [featureMatrix, cost] = minFunc( @(x) sparseCodingFeatureCost(weightMatrix, x, visibleSize, numFeatures, batchPatches, gamma, lambda, epsilon, groupMatrix), ...
                                           featureMatrix(:), options);
    featureMatrix = reshape(featureMatrix, numFeatures, batchNumPatches);                                      
       
    % Optimize for weight matrix  
    weightMatrix = zeros(visibleSize, numFeatures);      %%%  通过直接求导得出对weightMatrix进行优化,这里无需进行梯度迭代或者牛顿法等得出最终的结果
    weightMatrix = batchPatches*featureMatrix'/(gamma*batchNumPatches* eye(size(featureMatrix, 1)) + featureMatrix*featureMatrix');
    
    % -------------------- YOUR CODE HERE --------------------
    % Instructions:
    %   Fill in the analytic solution for weightMatrix that minimizes 
    %   the weight cost here.     
    %   Once that is done, use the code provided below to check that your
    %   closed form solution is correct.
    %   Once you have verified that your closed form solution is correct,
    %   you should comment out the checking code before running the
    %   optimization.
    
    [cost, grad] = sparseCodingWeightCost(weightMatrix, featureMatrix, visibleSize, numFeatures, batchPatches, gamma, lambda, epsilon, groupMatrix);
    assert(norm(grad) < 1e-12, 'Weight gradient should be close to 0. Check your closed form solution for weightMatrix again.')
    error('Weight gradient is okay. Comment out checking code before running optimization.');
    % -------------------- YOUR CODE HERE --------------------  
    
    
    % Visualize learned basis
    figure(1);
    display_network(weightMatrix);           
end

sparseCodingWeight.m

 

function [cost, grad] = sparseCodingWeightCost(weightMatrix, featureMatrix, visibleSize, numFeatures,  patches, gamma, lambda, epsilon, groupMatrix)
%sparseCodingWeightCost - given the features in featureMatrix, 
%                         computes the cost and gradient with respect to
%                         the weights, given in weightMatrix
% parameters
%   weightMatrix  - the weight matrix. weightMatrix(:, c) is the cth basis
%                   vector.
%   featureMatrix - the feature matrix. featureMatrix(:, c) is the features
%                   for the cth example
%   visibleSize   - number of pixels in the patches
%   numFeatures   - number of features
%   patches       - patches
%   gamma         - weight decay parameter (on weightMatrix)
%   lambda        - L1 sparsity weight (on featureMatrix)
%   epsilon       - L1 sparsity epsilon
%   groupMatrix   - the grouping matrix. groupMatrix(r, :) indicates the
%                   features included in the rth group. groupMatrix(r, c)
%                   is 1 if the cth feature is in the rth group and 0
%                   otherwise.

    if exist('groupMatrix', 'var')
        assert(size(groupMatrix, 2) == numFeatures, 'groupMatrix has bad dimension');
    else
        groupMatrix = eye(numFeatures);
    end

    numExamples = size(patches, 2);

    weightMatrix = reshape(weightMatrix, visibleSize, numFeatures);
    featureMatrix = reshape(featureMatrix, numFeatures, numExamples);
    
    % -------------------- YOUR CODE HERE --------------------
    % Instructions:
    %   Write code to compute the cost and gradient with respect to the
    %   weights given in weightMatrix.     
    % -------------------- YOUR CODE HERE --------------------   
    
    ave_square = sum(sum((weightMatrix * featureMatrix - patches).^2))./numExamples;   %计算重构误差
    weight_decay = gamma * sum(sum(weightMatrix.^2));            %
    cost = ave_square + weight_decay;
    
    grad = (2*weightMatrix*featureMatrix*featureMatrix' - 2 * patches*featureMatrix')./numExamples + 2*gamma*weightMatrix;
    grad = grad(:);
    

end

sparseCodingFeatureCost.m

 

function [cost, grad] = sparseCodingFeatureCost(weightMatrix, featureMatrix, visibleSize, numFeatures, patches, gamma, lambda, epsilon, groupMatrix)
%sparseCodingFeatureCost - given the weights in weightMatrix,
%                          computes the cost and gradient with respect to
%                          the features, given in featureMatrix
% parameters
%   weightMatrix  - the weight matrix. weightMatrix(:, c) is the cth basis
%                   vector.
%   featureMatrix - the feature matrix. featureMatrix(:, c) is the features
%                   for the cth example
%   visibleSize   - number of pixels in the patches
%   numFeatures   - number of features
%   patches       - patches
%   gamma         - weight decay parameter (on weightMatrix)
%   lambda        - L1 sparsity weight (on featureMatrix)
%   epsilon       - L1 sparsity epsilon
%   groupMatrix   - the grouping matrix. groupMatrix(r, :) indicates the
%                   features included in the rth group. groupMatrix(r, c)
%                   is 1 if the cth feature is in the rth group and 0
%                   otherwise.
    isTopo = 1;
    if exist('groupMatrix', 'var')
        assert(size(groupMatrix, 2) == numFeatures, 'groupMatrix has bad dimension');
        if(isequal(groupMatrix, eye(numFeatures)))
            isTopo = 0;
        end
    else
        groupMatrix = eye(numFeatures);
        isTopo = 0;
    end

    numExamples = size(patches, 2);

    weightMatrix = reshape(weightMatrix, visibleSize, numFeatures);
    featureMatrix = reshape(featureMatrix, numFeatures, numExamples);

    % -------------------- YOUR CODE HERE --------------------
    % Instructions:
    %   Write code to compute the cost and gradient with respect to the
    %   features given in featureMatrix.     
    %   You may wish to write the non-topographic version, ignoring
    %   the grouping matrix groupMatrix first, and extend the 
    %   non-topographic version to the topographic version later.
    % -------------------- YOUR CODE HERE --------------------
     ave_square = sum(sum((weightMatrix * featureMatrix - patches).^2))./numExamples;    % 计算重构误差
     sparsity = lambda .* sum(sum(sqrt( groupMatrix * (featureMatrix.^2) + epsilon)));      %计算系数惩罚项
     cost = ave_square + sparsity;
     gradResidue = (2* weightMatrix'* weightMatrix*featureMatrix - 2*weightMatrix'*patches)./numExamples; %%+ lambda*featureMatrix./sqrt(featureMatrix.^2+epsilon);
     
     if ~isTopo
        gradSparsity = lambda*featureMatrix./sqrt(featureMatrix.^2+epsilon);   %%% 不是拓扑的稀疏编码
     else
        gradSparsity = lambda * groupMatrix'*(groupMatrix *(featureMatrix .^ 2) + epsilon).^(0.5).*featureMatrix;   %% 拓扑稀疏编码
     end
     grad = gradResidue + gradSparsity;
     grad = grad(:);
    
end

参考文献:

1UFLDL教程http://ufldl.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B

2http://blog.csdn.net/zouxy09/article/details/24971995/机器学习中的范数规则化之(一)L0L1L2范数

3http://www.cnblogs.com/tornadomeet/archive/2013/04/16/3024292.htmlDeep learning:二十九(Sparse coding练习)

4http://www.cnblogs.com/tornadomeet/archive/2013/04/13/3018393.htmlDeep learning:二十六(Sparse coding简单理解)

UFLDL教程笔记及练习答案六(稀疏编码与稀疏编码自编码表达)

标签:稀疏编码   深度学习   

原文地址:http://blog.csdn.net/lu597203933/article/details/46489647

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!