稀疏编码(SparseCoding)
sparse coding也是deep learning中一个重要的分支,同样能够提取出数据集很好的特征(稀疏的)。选择使用具有稀疏性的分量来表示我们的输入数据是有原因的,因为绝大多数的感官数据,比如自然图像,可以被表示成少量基本元素的叠加,在图像中这些基本元素可以是面或者线。
稀疏编码算法的目的就是找到一组基向量使得我们能将输入向量x表示成这些基向量的线性组合:
这里构成的基向量要求是超完备的,即要求k大于n,这样的方程就大多情况会有无穷多个解,此时我们给它加入一个稀疏性的限制,最终的优化公式变成了如下形式:
其中S(ai)就是稀疏惩罚项,可以是L0或者L1范数,L1范数和L0范数都可以表示稀疏编码,L1范数是L0范数的最优凸近似,但是L1因具有比L0更好的优化求解特性而被广泛应用。
稀疏编码自编码表达:
将稀疏编码用到深度学习中,用于提取数据集良好的稀疏特征,设A为超完备的基向量,s表示输入数据最后的稀疏特征(也就是稀疏编码中的稀疏系数),这样就可以表示成X = A*s。
其实这里的A就等同于稀疏自编码中的W2,而s就是隐层的结点值。(当具有很多样本的时候,s就是一个矩阵,每一列表示的是一个样本的稀疏特征值)
最终的优化函数变成了:
优化步骤为:
可以采用以下两个trick来提高最后的迭代速度和精度。
(1)将样本表示成良好的“迷你块”,比如你有10000个样本,我们可以每次只随机选择2000个mini_patches进行迭代,这样不仅提高了迭代的速度,也提升了收敛的速度。
(2)良好的s初始化。因为我们的目标是X=As,因此交叉迭代优化的过程中,在A给定的情况下,我们可以将s初始化为s=AT*X,但这样可能会导致稀疏性的缺失,我们在做一个规范,这里其中的s的行数就等于A列数,然后用s的每个元素除以其所在A的那一列向量的2范数。
即 其中Ar表示矩阵A的第r列。这样对s做规范化处理就是为了保持较小的稀疏惩罚值。<个人认为UFLDL教程中该处A的下标是错误的。>
因此最后的优化算法步骤表示为:
注意:以上对s和A采用交叉迭代优化,其中我们会发现分别对s和A求导的时候,发现可以直接得出A的解析形式的解,因此在优化A的时候直接给出其解析形式的解就可以了,而s我们无法给出其解析形式的解,就需要用梯度迭代等无约束的优化问题了。
测试:当有一个新的样本x,我们需要用以上训练集得到的A来优化以上cost函数得到s就是该样本的稀疏特征。这样相比之前的前馈网络的,每次对新的数据样本进行“编码”,我们必须再次执行优化过程来得到所需的系数。
注:教程中拓扑稀疏编码的内容我还没有弄明白是如何得到groupMatrix的,这里就不误导大家了。
练习答案:
以下对grad的求解可以参看这篇blog:http://www.cnblogs.com/tornadomeet/archive/2013/04/16/3024292.html给出的推导结果。
Sparse_coding_exercise.m
%% CS294A/CS294W Sparse Coding Exercise % Instructions % ------------ % % This file contains code that helps you get started on the % sparse coding exercise. In this exercise, you will need to modify % sparseCodingFeatureCost.m and sparseCodingWeightCost.m. You will also % need to modify this file, sparseCodingExercise.m slightly. % Add the paths to your earlier exercises if necessary % addpath /path/to/solution %%====================================================================== %% STEP 0: Initialization % Here we initialize some parameters used for the exercise. numPatches = 20000; % number of patches numFeatures = 121; % number of features to learn patchDim = 8; % patch dimension visibleSize = patchDim * patchDim; % dimension of the grouping region (poolDim x poolDim) for topographic sparse coding poolDim = 3; % number of patches per batch batchNumPatches = 2000; lambda = 5e-5; % L1-regularisation parameter (on features) epsilon = 1e-5; % L1-regularisation epsilon |x| ~ sqrt(x^2 + epsilon) gamma = 1e-2; % L2-regularisation parameter (on basis) %%====================================================================== %% STEP 1: Sample patches images = load('IMAGES.mat'); images = images.IMAGES; patches = sampleIMAGES(images, patchDim, numPatches); display_network(patches(:, 1:64)); %%====================================================================== %% STEP 2: Implement and check sparse coding cost functions % Implement the two sparse coding cost functions and check your gradients. % The two cost functions are % 1) sparseCodingFeatureCost (in sparseCodingFeatureCost.m) for the features % (used when optimizing for s, which is called featureMatrix in this exercise) % 2) sparseCodingWeightCost (in sparseCodingWeightCost.m) for the weights % (used when optimizing for A, which is called weightMatrix in this exericse) % We reduce the number of features and number of patches for debugging % numFeatures = 25; % patches = patches(:, 1:5); % numPatches = 5; weightMatrix = randn(visibleSize, numFeatures) * 0.005; featureMatrix = randn(numFeatures, numPatches) * 0.005; %% STEP 2a: Implement and test weight cost % Implement sparseCodingWeightCost in sparseCodingWeightCost.m and check % the gradient [cost, grad] = sparseCodingWeightCost(weightMatrix, featureMatrix, visibleSize, numFeatures, patches, gamma, lambda, epsilon); numgrad = computeNumericalGradient( @(x) sparseCodingWeightCost(x, featureMatrix, visibleSize, numFeatures, patches, gamma, lambda, epsilon), weightMatrix(:) ); % Uncomment the blow line to display the numerical and analytic gradients side by side % disp([numgrad grad]); diff = norm(numgrad-grad)/norm(numgrad+grad); fprintf('Weight difference: %g\n', diff); assert(diff < 1e-8, 'Weight difference too large. Check your weight cost function. '); %% STEP 2b: Implement and test feature cost (non-topographic) % Implement sparseCodingFeatureCost in sparseCodingFeatureCost.m and check % the gradient. You may wish to implement the non-topographic version of % the cost function first, and extend it to the topographic version later. % Set epsilon to a larger value so checking the gradient numerically makes sense epsilon = 1e-2; % We pass in the identity matrix as the grouping matrix, putting each % feature in a group on its own. groupMatrix = eye(numFeatures); [cost, grad] = sparseCodingFeatureCost(weightMatrix, featureMatrix, visibleSize, numFeatures, patches, gamma, lambda, epsilon, groupMatrix); numgrad = computeNumericalGradient( @(x) sparseCodingFeatureCost(weightMatrix, x, visibleSize, numFeatures, patches, gamma, lambda, epsilon, groupMatrix), featureMatrix(:) ); % Uncomment the blow line to display the numerical and analytic gradients side by side % disp([numgrad grad]); diff = norm(numgrad-grad)/norm(numgrad+grad); fprintf('Feature difference (non-topographic): %g\n', diff); assert(diff < 1e-8, 'Feature difference too large. Check your feature cost function. '); %% STEP 2c: Implement and test feature cost (topographic) % Implement sparseCodingFeatureCost in sparseCodingFeatureCost.m and check % the gradient. This time, we will pass a random grouping matrix in to % check if your costs and gradients are correct for the topographic % version. % Set epsilon to a larger value so checking the gradient numerically makes sense epsilon = 1e-2; % This time we pass in a random grouping matrix to check if the grouping is % correct. groupMatrix = rand(100, numFeatures); [cost, grad] = sparseCodingFeatureCost(weightMatrix, featureMatrix, visibleSize, numFeatures, patches, gamma, lambda, epsilon, groupMatrix); numgrad = computeNumericalGradient( @(x) sparseCodingFeatureCost(weightMatrix, x, visibleSize, numFeatures, patches, gamma, lambda, epsilon, groupMatrix), featureMatrix(:) ); % Uncomment the blow line to display the numerical and analytic gradients side by side % disp([numgrad grad]); diff = norm(numgrad-grad)/norm(numgrad+grad); fprintf('Feature difference (topographic): %g\n', diff); assert(diff < 1e-8, 'Feature difference too large. Check your feature cost function. '); %%====================================================================== %% STEP 3: Iterative optimization % Once you have implemented the cost functions, you can now optimize for % the objective iteratively. The code to do the iterative optimization % using mini-batching and good initialization of the features has already % been included for you. % % However, you will still need to derive and fill in the analytic solution % for optimizing the weight matrix given the features. % Derive the solution and implement it in the code below, verify the % gradient as described in the instructions below, and then run the % iterative optimization. % Initialize options for minFunc options.Method = 'lbfgs'; options.display = 'off'; options.verbose = 0; % Initialize matrices weightMatrix = rand(visibleSize, numFeatures); featureMatrix = rand(numFeatures, batchNumPatches); % Initialize grouping matrix assert(floor(sqrt(numFeatures)) ^2 == numFeatures, 'numFeatures should be a perfect square'); donutDim = floor(sqrt(numFeatures)); assert(donutDim * donutDim == numFeatures,'donutDim^2 must be equal to numFeatures'); groupMatrix = zeros(numFeatures, donutDim, donutDim); groupNum = 1; %% 获得拓扑稀疏编码 这段处理不太懂啊!! for row = 1:donutDim for col = 1:donutDim groupMatrix(groupNum, 1:poolDim, 1:poolDim) = 1; groupNum = groupNum + 1; groupMatrix = circshift(groupMatrix, [0 0 -1]); end groupMatrix = circshift(groupMatrix, [0 -1, 0]); end groupMatrix = reshape(groupMatrix, numFeatures, numFeatures); if isequal(questdlg('Initialize grouping matrix for topographic or non-topographic sparse coding?', 'Topographic/non-topographic?', 'Non-topographic', 'Topographic', 'Non-topographic'), 'Non-topographic') groupMatrix = eye(numFeatures); end % Initial batch indices = randperm(numPatches); indices = indices(1:batchNumPatches); batchPatches = patches(:, indices); fprintf('%6s%12s%12s%12s%12s\n','Iter', 'fObj','fResidue','fSparsity','fWeight'); for iteration = 1:200 %% 因为要交替优化直到最小化cost function, 所以才这样进行的 error = weightMatrix * featureMatrix - batchPatches; error = sum(error(:) .^ 2) / batchNumPatches; fResidue = error; R = groupMatrix * (featureMatrix .^ 2); R = sqrt(R + epsilon); fSparsity = lambda * sum(R(:)); fWeight = gamma * sum(weightMatrix(:) .^ 2); fprintf(' %4d %10.4f %10.4f %10.4f %10.4f\n', iteration, fResidue+fSparsity+fWeight, fResidue, fSparsity, fWeight) %% 以上这部分可以不用的,只是为了显示最终的 % Select a new batch indices = randperm(numPatches); %% 重新挑选2000个样本用来进行训练 indices = indices(1:batchNumPatches); batchPatches = patches(:, indices); %%% 重新挑选的样本 % Reinitialize featureMatrix with respect to the new batch featureMatrix = weightMatrix' * batchPatches; %% trick 对featureMatrix(s)进行初始化 --技巧 方法 normWM = sum(weightMatrix .^ 2)'; %%%%% 也就是weightMatrix矩阵每列的平方和 featureMatrix = bsxfun(@rdivide, featureMatrix, normWM); %% featureMatrix除以上者 % Optimize for feature matrix options.maxIter = 20; % 迭代20次,并对featureMatrix进行无约束优化 [featureMatrix, cost] = minFunc( @(x) sparseCodingFeatureCost(weightMatrix, x, visibleSize, numFeatures, batchPatches, gamma, lambda, epsilon, groupMatrix), ... featureMatrix(:), options); featureMatrix = reshape(featureMatrix, numFeatures, batchNumPatches); % Optimize for weight matrix weightMatrix = zeros(visibleSize, numFeatures); %%% 通过直接求导得出对weightMatrix进行优化,这里无需进行梯度迭代或者牛顿法等得出最终的结果 weightMatrix = batchPatches*featureMatrix'/(gamma*batchNumPatches* eye(size(featureMatrix, 1)) + featureMatrix*featureMatrix'); % -------------------- YOUR CODE HERE -------------------- % Instructions: % Fill in the analytic solution for weightMatrix that minimizes % the weight cost here. % Once that is done, use the code provided below to check that your % closed form solution is correct. % Once you have verified that your closed form solution is correct, % you should comment out the checking code before running the % optimization. [cost, grad] = sparseCodingWeightCost(weightMatrix, featureMatrix, visibleSize, numFeatures, batchPatches, gamma, lambda, epsilon, groupMatrix); assert(norm(grad) < 1e-12, 'Weight gradient should be close to 0. Check your closed form solution for weightMatrix again.') error('Weight gradient is okay. Comment out checking code before running optimization.'); % -------------------- YOUR CODE HERE -------------------- % Visualize learned basis figure(1); display_network(weightMatrix); end
sparseCodingWeight.m
function [cost, grad] = sparseCodingWeightCost(weightMatrix, featureMatrix, visibleSize, numFeatures, patches, gamma, lambda, epsilon, groupMatrix) %sparseCodingWeightCost - given the features in featureMatrix, % computes the cost and gradient with respect to % the weights, given in weightMatrix % parameters % weightMatrix - the weight matrix. weightMatrix(:, c) is the cth basis % vector. % featureMatrix - the feature matrix. featureMatrix(:, c) is the features % for the cth example % visibleSize - number of pixels in the patches % numFeatures - number of features % patches - patches % gamma - weight decay parameter (on weightMatrix) % lambda - L1 sparsity weight (on featureMatrix) % epsilon - L1 sparsity epsilon % groupMatrix - the grouping matrix. groupMatrix(r, :) indicates the % features included in the rth group. groupMatrix(r, c) % is 1 if the cth feature is in the rth group and 0 % otherwise. if exist('groupMatrix', 'var') assert(size(groupMatrix, 2) == numFeatures, 'groupMatrix has bad dimension'); else groupMatrix = eye(numFeatures); end numExamples = size(patches, 2); weightMatrix = reshape(weightMatrix, visibleSize, numFeatures); featureMatrix = reshape(featureMatrix, numFeatures, numExamples); % -------------------- YOUR CODE HERE -------------------- % Instructions: % Write code to compute the cost and gradient with respect to the % weights given in weightMatrix. % -------------------- YOUR CODE HERE -------------------- ave_square = sum(sum((weightMatrix * featureMatrix - patches).^2))./numExamples; %计算重构误差 weight_decay = gamma * sum(sum(weightMatrix.^2)); % cost = ave_square + weight_decay; grad = (2*weightMatrix*featureMatrix*featureMatrix' - 2 * patches*featureMatrix')./numExamples + 2*gamma*weightMatrix; grad = grad(:); end
sparseCodingFeatureCost.m
function [cost, grad] = sparseCodingFeatureCost(weightMatrix, featureMatrix, visibleSize, numFeatures, patches, gamma, lambda, epsilon, groupMatrix) %sparseCodingFeatureCost - given the weights in weightMatrix, % computes the cost and gradient with respect to % the features, given in featureMatrix % parameters % weightMatrix - the weight matrix. weightMatrix(:, c) is the cth basis % vector. % featureMatrix - the feature matrix. featureMatrix(:, c) is the features % for the cth example % visibleSize - number of pixels in the patches % numFeatures - number of features % patches - patches % gamma - weight decay parameter (on weightMatrix) % lambda - L1 sparsity weight (on featureMatrix) % epsilon - L1 sparsity epsilon % groupMatrix - the grouping matrix. groupMatrix(r, :) indicates the % features included in the rth group. groupMatrix(r, c) % is 1 if the cth feature is in the rth group and 0 % otherwise. isTopo = 1; if exist('groupMatrix', 'var') assert(size(groupMatrix, 2) == numFeatures, 'groupMatrix has bad dimension'); if(isequal(groupMatrix, eye(numFeatures))) isTopo = 0; end else groupMatrix = eye(numFeatures); isTopo = 0; end numExamples = size(patches, 2); weightMatrix = reshape(weightMatrix, visibleSize, numFeatures); featureMatrix = reshape(featureMatrix, numFeatures, numExamples); % -------------------- YOUR CODE HERE -------------------- % Instructions: % Write code to compute the cost and gradient with respect to the % features given in featureMatrix. % You may wish to write the non-topographic version, ignoring % the grouping matrix groupMatrix first, and extend the % non-topographic version to the topographic version later. % -------------------- YOUR CODE HERE -------------------- ave_square = sum(sum((weightMatrix * featureMatrix - patches).^2))./numExamples; % 计算重构误差 sparsity = lambda .* sum(sum(sqrt( groupMatrix * (featureMatrix.^2) + epsilon))); %计算系数惩罚项 cost = ave_square + sparsity; gradResidue = (2* weightMatrix'* weightMatrix*featureMatrix - 2*weightMatrix'*patches)./numExamples; %%+ lambda*featureMatrix./sqrt(featureMatrix.^2+epsilon); if ~isTopo gradSparsity = lambda*featureMatrix./sqrt(featureMatrix.^2+epsilon); %%% 不是拓扑的稀疏编码 else gradSparsity = lambda * groupMatrix'*(groupMatrix *(featureMatrix .^ 2) + epsilon).^(0.5).*featureMatrix; %% 拓扑稀疏编码 end grad = gradResidue + gradSparsity; grad = grad(:); end
参考文献:
1:UFLDL教程http://ufldl.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B
2:http://blog.csdn.net/zouxy09/article/details/24971995/机器学习中的范数规则化之(一)L0、L1与L2范数
3:http://www.cnblogs.com/tornadomeet/archive/2013/04/16/3024292.htmlDeep learning:二十九(Sparse coding练习)
4:http://www.cnblogs.com/tornadomeet/archive/2013/04/13/3018393.htmlDeep learning:二十六(Sparse coding简单理解)
UFLDL教程笔记及练习答案六(稀疏编码与稀疏编码自编码表达)
原文地址:http://blog.csdn.net/lu597203933/article/details/46489647