码迷,mamicode.com
首页 > 其他好文 > 详细

动态规划--多边形游戏

时间:2015-06-14 12:13:12      阅读:103      评论:0      收藏:0      [点我收藏+]

标签:

 

1、问题描述:   

      给定N个顶点的多边形,每个顶点标有一个整数,每条边上标有+(加)或是×(乘)号,并且N条边按照顺时针

依次编号为1~N。下图给出了一个N=4个顶点的多边形。

技术分享

     游戏规则 :(1) 首先,移走一条边。 (2) 然后进行下面的操作: 选中一条边E,该边有两个相邻的顶点,不妨称为V1和V2。对V1和V2顶点所标的整数按照E上所标运算符号(+或是×)进行运算,得到一个整数;用该整数标注一个新顶点,该顶点代替V1和V2 。 持续进行此操作,直到最后没有边存在,即只剩下一个顶点。该顶点的整数称为此次游戏的得分(Score)。

技术分享

 

    2、问题分析:

     解决该问题可用动态规划中的最优子结构性质来解。该问题与凸多边形最优三角剖分问题类似, 但二者的最优子结构性质不同。 多边形游戏的最优子结构性质更具有一般性。

 

    设所给的多边形的顶点和边的顺时针序列为op[1],v[1],op[2],v[2],op[3],…,op[n],v[n] 其中,op[i]表示第i条边所对应的运算符,v[i]表示第i个顶点上的数值,i=1~n。

    在所给的多边形中,从顶点i(1<=i<=n)开始,长度为j(链中有j个顶点)的顺时针链p(i,j)可表示为v[i],op[i+1],…,v[i+j-1],如果这条链的最后一次合并运算在op[i+s]处发生(1<=s<=j-1),则可在op[i+s]处将链分割为两个子链p(i,s)和p(i+s,j-s)。

    设m[i,j,0]是链p(i,j)合并的最小值,而m[i,j,1]是最大值。若最优合并在op[i+s]处将p(i,j)分为两个长度小于j的子链的最大值和最小值均已计算出。即:

    a=m[i,s,0]  b=m[i,s,1]  c=m[i,s,0]  d=m[i,s,1]

   (1) 当op[i+s]=’+’时

    m[i,j,0]=a+c ;m[i,j,1]=b+d

   (2) 当op[i+s]=’*’时

    m[i,j,0]=min{ac,ad,bc,bd} ; m[i,j,1]=max{ac,ad,bc,bd}

    由于最优断开位置s有1<=s<=j-1的j-1中情况。 初始边界值为 m[i,1,0]=v[i]   1<=i<=n m[i,1,1]=v[i]   1<=i<=n

    因为多变形式封闭的,在上面的计算中,当i+s>n时,顶点i+s实际编号为(i+s)modn。按上述递推式计算出的m[i,n,1]记为游戏首次删除第i条边后得到的最大得分。

摘自:http://blog.csdn.net/liufeng_king/article/details/8641118

 

    算法描述:

技术分享
 1 void minMax(int i, int s, int i)
 2 {
 3     int e[5];
 4     int a = m[i][s][0], 
 5          b = m[i][s][1],
 6          r = (i+s-1)%n + 1;
 7          c = m[r][j-s][0],
 8          d = m[r][j-s][1];
 9          if(op[r]==t)
10          {
11              minf = a+c;
12              maxf = b+d;
13          }
14          else
15          {
16              e[1] = a*c;
17              e[2] = a*d;
18              e[3] = b*c;
19              e[4] = b*d;
20              minf = e[1];
21              maxf = e[1];
22              for(int k=2; k<5; k++)
23              {
24                  if(minf>e[k]) minf = e[k];
25                  if(minf<e[k]) maxf = e[k];
26              }
27          }
28 }
29 
30 int polyMax()
31 {
32     for(int j=2; j<=n; j++)
33     for(int i=1; i<=n; i++)
34     for(int s=1; s<j; s++)
35     {
36         minMax(i, s, j);
37         if(m[i][j][0]>minf) m[i][j][0] = minf;
38         if(m[i][j][1]<maxf) m[i][j][1] = maxf;
39     }
40     int temp = m[1][n][1];
41     for(int i=2; i<=n; i++)
42     //这里的m[i][n][1]表示游戏删去第i条边后
43     //得到的最大得分。 
44     if(temp<m[i][n][1]) temp = m[i][n][1]; 
45     return temp;
46 }
47 //再次提醒:由于多边形是封闭的, 在上面的计算中,
48 //当i+s>n时, 顶点i+s实际编号为(i+s)mod n .
49 //按以上的递推公式计算出的m[i][n][1]表示
50 //游戏删去第i条边后得到的最大得分。 
View Code

 

动态规划--多边形游戏

标签:

原文地址:http://www.cnblogs.com/acm1314/p/4574761.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!