码迷,mamicode.com
首页 > 其他好文 > 详细

MapReduce之Partitioner组件

时间:2015-06-14 12:32:10      阅读:145      评论:0      收藏:0      [点我收藏+]

标签:partitioner   mapreduce   

简述

Partitioner组件可以让Map对Key进行分区,从而可以根据不同的key来分发到不同的reduce中去处理;

你可以自定义key的一个分发规则,如数据文件包含不同的大学,而输出的要求是每个大学输出一个文件;

Partitioner组件提供了一个默认的HashPartitioner

package org.apache.hadoop.mapreduce.lib.partition;
public class HashPartitioner<K, V> extends Partitioner<K, V> {

  /** Use {@link Object#hashCode()} to partition. */
  public int getPartition(K key, V value,
                          int numReduceTasks) {
    return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
  }
}

自定义Partitioner

1、继承抽象类Partitioner,实现自定义的getPartition()方法;
2、通过job.setPartitionerClass(...)来设置自定义的Partitioner;

Partitioner类

package org.apache.hadoop.mapreduce;
public abstract class Partitioner<KEY, VALUE> {

  /** 
   * Get the partition number for a given key (hence record) given the total 
   * number of partitions i.e. number of reduce-tasks for the job.
   *   
   * <p>Typically a hash function on a all or a subset of the key.</p>
   *
   * @param key the key to be partioned.
   * @param value the entry value.
   * @param numPartitions the total number of partitions.
   * @return the partition number for the <code>key</code>.
   */
  public abstract int getPartition(KEY key, VALUE value, int numPartitions);

}

Partitioner应用场景及实例

需求:分别统计每种商品的周销售情况
address1的周销售清单(input1):

shoes 20
hat 10
stockings 30
clothes 40

address2的周销售清单(input2):

shoes 15
hat 1
stockings 90
clothes 80

汇总结果(output):

shoes 35
hat 11
stockings 120
clothes 120

package MyPartitioner;

import java.io.IOException;
import java.net.URI;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;





public class MyPartitioner {
    private final static String INPUT_PATH = "hdfs://liguodong:8020/input";
    private final static String OUTPUT_PATH = "hdfs://liguodong:8020/output";

    public static class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
    private Text word = new Text();
    private IntWritable one = new IntWritable();

    @Override
    protected void map(LongWritable key, Text value, Context context)
            throws IOException, InterruptedException {

            String[] str = value.toString().split("\\s+");

            word.set(str[0]);
            one.set(Integer.parseInt(str[1]));
            context.write(word, one);
        }
    }


    public static class MyReducer extends Reducer<Text, IntWritable,Text, IntWritable>{
        private IntWritable result = new IntWritable();

        @Override
        protected void reduce(Text key, Iterable<IntWritable> values,
                Context context)
                throws IOException, InterruptedException {

            int sum = 0;
            for (IntWritable val : values) {
                sum+=val.get();
            }
            result.set(sum);
            context.write(key,result);
        }   
    }

    public static class DefPartitioner extends Partitioner<Text,IntWritable>{

        @Override
        public int getPartition(Text key, IntWritable value, int numPartitions) {
            if(key.toString().equals("shoes")){
                return 0;

            }else if(key.toString().equals("hat")){
                return 1;

            }else if(key.toString().equals("stockings")){
                return 2;

            }else{
                return 3;
            }
        }

    }



    public static void main(String[] args) throws Exception {
        //1、配置  
        Configuration conf = new Configuration();
        final FileSystem fileSystem = FileSystem.get(new URI(INPUT_PATH),conf);
        if(fileSystem.exists(new Path(OUTPUT_PATH)))
        {
            fileSystem.delete(new Path(OUTPUT_PATH),true);
        }
        Job job = Job.getInstance(conf, "define partitioner"); 

        //2、打包运行必须执行的方法
        job.setJarByClass(MyPartitioner.class);

        //3、输入路径
        FileInputFormat.addInputPath(job, new Path(INPUT_PATH));  
        //4、Map
        job.setMapperClass(MyMapper.class);

        //5、Combiner
        //job.setCombinerClass(MyReducer.class);
        job.setPartitionerClass(DefPartitioner.class);

        //6、Reducer
        job.setReducerClass(MyReducer.class);
        job.setNumReduceTasks(4);//reduce个数默认是1

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        //7、 输出路径
        FileOutputFormat.setOutputPath(job, new Path(OUTPUT_PATH));

        //8、提交作业
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }  
}
[root@liguodong file]# hdfs dfs -mkdir /input
上传文件
[root@liguodong file]# hdfs dfs -put input1 /input/
[root@liguodong file]# hdfs dfs -put input2 /input/
[root@liguodong file]# hdfs dfs -ls  /input/
Found 2 items
-rw-r--r--   1 root supergroup         52 2015-06-14 10:22 /input/input1
-rw-r--r--   1 root supergroup         50 2015-06-14 10:22 /input/input2

打成jar包,然后执行。
[root@liguodong file]# jar tf partitioner.jar
META-INF/MANIFEST.MF
MyPartitioner/MyPartitioner$DefPartitioner.class
MyPartitioner/MyPartitioner$MyMapper.class
MyPartitioner/MyPartitioner$MyReducer.class
MyPartitioner/MyPartitioner.class

[root@liguodong file]# yarn jar partitioner.jar

输出结果
[root@liguodong file]# hdfs dfs -ls /output/
Found 5 items
-rw-r--r--   1 root supergroup          0 2015-06-14 11:08 /output/_SUCCESS
-rw-r--r--   1 root supergroup          9 2015-06-14 11:08 /output/part-r-00000
-rw-r--r--   1 root supergroup          7 2015-06-14 11:08 /output/part-r-00001
-rw-r--r--   1 root supergroup          0 2015-06-14 11:08 /output/part-r-00002
-rw-r--r--   1 root supergroup         26 2015-06-14 11:08 /output/part-r-00003
[root@liguodong file]# hdfs dfs -cat /output/part-r-00000
shoes   35
[root@liguodong file]# hdfs dfs -cat /output/part-r-00001
hat     11
[root@liguodong file]# hdfs dfs -cat /output/part-r-00002
stockings       120
[root@liguodong file]# hdfs dfs -cat /output/part-r-00003
clothes 120

MapReduce之Partitioner组件

标签:partitioner   mapreduce   

原文地址:http://blog.csdn.net/scgaliguodong123_/article/details/46489357

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!