标签:dp 动态规划 unique path leetcode
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
题目:给定一个m*n的矩阵,让机器人从左上方走到右下方,只能往下和往右走,一共多少中走法。
思路:采用动态规划设计思想,到第0列和第0行的任何位置都只有1种走法,即初始化为d[0][*] = 1,d[*][0] = 1;当机器人走到第i行第j列的时候,它的走法总数是等于第i-1行第j列的总数加上第i行第j-1列的总数,即dp [ i ] [ j ] = d[i-1][j] + dp[i][j-1].代码如下:
Code(c++):
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int> > dp(m,vector<int> (n));
for(int k = 0; k < m; k++) {
dp[k][0] = 1;
}
for(int t = 0; t < n; t++) {
dp[0][t] = 1;
}
for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
};
标签:dp 动态规划 unique path leetcode
原文地址:http://blog.csdn.net/dream_angel_z/article/details/46490603