标签:
This is the classic LCS problem. Since it only requires you to print the maximum length, the code can be optimized to use only O(m) space (see here).
My accepted code is as follows.
1 #include <iostream> 2 #include <string> 3 #include <vector> 4 5 using namespace std; 6 7 int lcs(string s, string t) { 8 int m = s.length(), n = t.length(); 9 vector<int> cur(m + 1, 0); 10 for (int i = 1; i <= m; i++) { 11 if (s[i - 1] == t[0]) cur[i] = 1; 12 else cur[i] = cur[i - 1]; 13 } 14 for (int j = 1; j < n; j++) { 15 int pre = 0; 16 for (int i = 1; i <= m; i++) { 17 int temp = cur[i]; 18 if (s[i - 1] == t[j]) cur[i] = pre + 1; 19 else cur[i] = max(cur[i], cur[i - 1]); 20 pre = temp; 21 } 22 } 23 return cur[m]; 24 } 25 26 int main(void) { 27 string s, t; 28 while (getline(cin, s)) { 29 getline(cin, t); 30 cout << lcs(s, t) << endl; 31 } 32 return 0; 33 }
Well, try this problem here and get Accepted :)
[UVa Online Judge] Longest Common Subsequence
标签:
原文地址:http://www.cnblogs.com/jcliBlogger/p/4575970.html