码迷,mamicode.com
首页 > 其他好文 > 详细

hdoj1423 最长上升公共子序列

时间:2015-06-16 09:26:02      阅读:121      评论:0      收藏:0      [点我收藏+]

标签:最长上升公共子序列

hdoj1423

题目分析:
两个数组a[n1] , b[n2], 求最长上升公共子序列。
我们可用一维存储 f[i] 表示 b 数组以 j 结尾, 与 a[] 数组构成的最长公共上升子序列。 对数组 d 的任意 j 位, 都枚举 a[1 ~n1]。
当a[i] == b[j] 时 , 在1 ~ j - 1中 找出 b[k] 小于 a[ i ] 并且 d[k] 的值最大。 当 a[ i ] > b [j ] 时, 在0到j-1中,对于小于a[i]的,保存f值的最优解 (保存小于a [ i ] 并且 d[k]值最大的值所在的位置)。

#include<iostream>
#include<string>
#include<algorithm>
#include<string.h>
#include<cstring>
#include<cstdio>
using namespace std;

int t, n1, n2, a[505], b[505], d[505];

int LCIS()
{
    for(int i = 1; i <= n1; i++)
    {
        int k = 1;
        for(int j = 1; j <= n2; j++)
        {
            if(a[i] == b[j])
            {
                d[j] = max(d[j], d[k] + 1);
            }
            else if(a[i] > b[j])
            {
                if(d[k] < d[j])
                    k = j;
            }
        }
    }
    int mx = 0;
    for(int i = 1; i <= n2; i++)
        mx = max(mx, d[i]);
    return mx;
}
int main()
{
    cin >> t;
    while(t--)
    {
        memset(d, 0, sizeof(d));
        scanf("%d", &n1);
        for(int i = 1; i <= n1; i++)
            scanf("%d", &a[i]);
        scanf("%d", &n2);
        for(int i = 1; i <= n2; i++)
            scanf("%d", &b[i]);
        int ans = LCIS();
        printf("%d\n", ans);
        if(t != 0)
            printf("\n");
    }
    return 0;
}

hdoj1423 最长上升公共子序列

标签:最长上升公共子序列

原文地址:http://blog.csdn.net/wangdan11111/article/details/46508963

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!