标签:
学习了一下树链剖分,找了几个有意义的题目训练一下
前4题是基础训练, A、B是AOV树(点记录信息) C、D是AOE树(边记录信息)
*注意一下poj好像是提交的代码包含/**/这样的注释会出问题
A、HDU 3966
题意:给你N个点M条边的一棵AOV树,有P次操作
操作分别是:‘I’:将C1到C2路径上的点增加K;
‘D’:将C1到C2路径上的点减少K;
‘Q’:问你C点上的权;
解:树链剖分基础题,需要注意的是杭电的服务器是windows的,代码中加入用下面这句话扩栈
#pragma comment(linker, "/STACK:1024000000,1024000000")
1 /* 2 * Problem: 3 * Author: SHJWUDP 4 * Created Time: 2015/6/11 星期四 12:10:10 5 * File Name: 233.cpp 6 * State: 7 * Memo: 8 */ 9 #pragma comment(linker, "/STACK:1024000000,1024000000") 10 #include <iostream> 11 #include <cstdio> 12 #include <cstring> 13 #include <algorithm> 14 using namespace std; 15 16 typedef long long int64; 17 18 const int MaxA=5e4+7; 19 20 struct Edge { 21 int v, nt; 22 Edge() {} 23 Edge(int v, int nt):v(v), nt(nt) {} 24 } edges[MaxA<<1]; 25 26 int head[MaxA], edgeNum; 27 28 struct Fenwick { 29 int n; 30 int c[MaxA]; 31 32 void init(int n) { 33 this->n=n; 34 memset(c, 0, sizeof(c[0])*(n+3)); 35 } 36 37 int lowbit(int x) { 38 return x&(-x); 39 } 40 41 void update(int x, int d) { 42 while(x>0) { 43 c[x]+=d; 44 x-=lowbit(x); 45 } 46 } 47 48 int query(int x) { 49 int res=0; 50 while(x<=n) { 51 res+=c[x]; 52 x+=lowbit(x); 53 } 54 return res; 55 } 56 } fw; 57 58 int N, M, P; 59 int oval[MaxA], val[MaxA]; 60 61 void init() { 62 memset(head, -1, sizeof(head)); 63 edgeNum=0; 64 } 65 void addEdge(int u, int v) { 66 edges[edgeNum]=Edge(v, head[u]); 67 head[u]=edgeNum++; 68 } 69 namespace LCT { 70 int fa[MaxA]; 71 int dep[MaxA]; 72 int siz[MaxA]; 73 int son[MaxA]; 74 int top[MaxA]; 75 int w[MaxA]; 76 int id; 77 78 int dfs1(int u, int d) { 79 dep[u]=d; siz[u]=1; son[u]=-1; 80 for(int i=head[u]; ~i; i=edges[i].nt) { 81 Edge& e=edges[i]; 82 if(e.v==fa[u]) continue; 83 fa[e.v]=u; 84 siz[u]+=dfs1(e.v, d+1); 85 if(son[u]==-1 || siz[son[u]]<siz[e.v]) son[u]=e.v; 86 } 87 return siz[u]; 88 } 89 90 void dfs2(int u, int tp) { 91 w[u]=++id; top[u]=tp; 92 if(~son[u]) dfs2(son[u], tp); 93 for(int i=head[u]; ~i; i=edges[i].nt) { 94 Edge& e=edges[i]; 95 if(e.v==fa[u] || e.v==son[u]) continue; 96 dfs2(e.v, e.v); 97 } 98 } 99 100 void init() { 101 int root=1; 102 id=0; 103 fa[root]=-1; 104 dfs1(root, 0); 105 dfs2(root, root); 106 fw.init(N); 107 for(int i=1; i<=N; i++) { 108 fw.update(w[i]-1, -oval[i]); 109 fw.update(w[i], oval[i]); 110 } 111 } 112 113 void update(int u, int v, int d) { 114 int f1=top[u], f2=top[v]; 115 while(f1!=f2) { 116 if(dep[f1]<dep[f2]) { swap(f1, f2); swap(u, v); } 117 fw.update(w[f1]-1, -d); fw.update(w[u], d); 118 u=fa[f1]; f1=top[u]; 119 } 120 if(dep[u]>dep[v]) swap(u, v); 121 fw.update(w[u]-1, -d); fw.update(w[v], d); 122 } 123 124 int query(int x) { 125 return fw.query(w[x]); 126 } 127 } 128 int main() { 129 #ifndef ONLINE_JUDGE 130 freopen("in", "r", stdin); 131 //freopen("out", "w", stdout); 132 #endif 133 while(~scanf("%d%d%d", &N, &M, &P)) { 134 for(int i=1; i<=N; i++) { 135 scanf("%d", &oval[i]); 136 } 137 init(); 138 for(int i=0; i<M; i++) { 139 int a, b; 140 scanf("%d%d", &a, &b); 141 addEdge(a, b); 142 addEdge(b, a); 143 } 144 LCT::init(); 145 while(P--) { 146 char op[2]; 147 scanf("%s", op); 148 if(op[0]==‘Q‘) { 149 int x; 150 scanf("%d", &x); 151 printf("%d\n", LCT::query(x)); 152 } else { 153 int a, b, c; 154 scanf("%d%d%d", &a, &b, &c); 155 if(op[0]==‘D‘) c=-c; 156 LCT::update(a, b, c); 157 } 158 } 159 } 160 return 0; 161 }
题意:N个点的点AOV树,M次操作
操作:‘C a b c’:把节点a到节点b路径上所有点(包括a和b)都染成颜色c;
‘Q a b’:询问节点a到节点b(包括a和b)路径上的颜色段数量;
解:在A的基础上修改一下就好,需要理解树剖的分链而治
1 /************************************************************** 2 Problem: 2243 3 User: shjwudp 4 Language: C++ 5 Result: Accepted 6 Time:4324 ms 7 Memory:17388 kb 8 ****************************************************************/ 9 10 /* 11 * Problem: 12 * Author: SHJWUDP 13 * Created Time: 2015/6/11 星期四 19:27:57 14 * File Name: 233.cpp 15 * State: 16 * Memo: 17 */ 18 #include <iostream> 19 #include <cstdio> 20 #include <cstring> 21 #include <algorithm> 22 23 using namespace std; 24 25 const int MaxA=1e5+7; 26 27 struct Edge { 28 int v, nt; 29 Edge(){} 30 Edge(int v, int nt):v(v), nt(nt){} 31 } edges[MaxA<<1]; 32 33 int head[MaxA], edgeNum; 34 35 struct SegmentTree { 36 struct Node { 37 int l, r; 38 int cnt; 39 int mark; 40 } c[MaxA<<2]; 41 int n; 42 int *val; 43 int L, R, v; 44 #define lson l, m, rt<<1 45 #define rson m+1, r, rt<<1|1 46 #define RUSH Node& u=c[rt]; Node& ls=c[rt<<1]; Node& rs=c[rt<<1|1]; 47 48 void pushUp(int rt) { 49 RUSH 50 u.cnt=ls.cnt+rs.cnt-(ls.r==rs.l?1:0); 51 u.l=ls.l; 52 u.r=rs.r; 53 } 54 55 void pushDown(int rt) { 56 RUSH 57 if(~u.mark) { 58 ls.mark=rs.mark=ls.l=ls.r=rs.l=rs.r=u.mark; 59 ls.cnt=rs.cnt=1; 60 u.mark=-1; 61 } 62 } 63 64 void doBuild(int l, int r, int rt) { 65 c[rt].mark=-1; 66 if(l==r) { 67 c[rt].l=c[rt].r=val[l]; 68 c[rt].cnt=1; 69 } else { 70 int m=(l+r)>>1; 71 doBuild(lson); 72 doBuild(rson); 73 pushUp(rt); 74 } 75 } 76 77 void build(int n, int *val) { 78 this->n=n; this->val=val; 79 doBuild(1, n, 1); 80 } 81 82 void doColor(int l, int r, int rt) { 83 if(L<=l && r<=R) { 84 c[rt].l=c[rt].r=c[rt].mark=v; 85 c[rt].cnt=1; 86 } else { 87 pushDown(rt); 88 int m=(l+r)>>1; 89 if(L<=m) doColor(lson); 90 if(m<R) doColor(rson); 91 pushUp(rt); 92 } 93 } 94 95 void color(int L, int R, int v) { 96 this->L=L; this->R=R; this->v=v; 97 doColor(1, n, 1); 98 } 99 100 int doQuery(int l, int r, int rt) { 101 RUSH 102 if(L<=l && r<=R) { 103 return u.cnt; 104 } else { 105 pushDown(rt); 106 int m=(l+r)>>1; 107 int res=0; 108 if(L<=m) res+=doQuery(lson); 109 if(m<R) res+=doQuery(rson)-(res&&ls.r==rs.l?1:0); 110 return res; 111 } 112 } 113 114 int query(int L, int R) { 115 this->L=L; this->R=R; 116 return doQuery(1, n, 1); 117 } 118 119 int qcolor(int p) { 120 int l=1, r=n, rt=1; 121 while(l<r) { 122 pushDown(rt); 123 int m=(l+r)>>1; 124 if(p<=m) r=m, rt=rt<<1; 125 else l=m+1, rt=rt<<1|1; 126 } 127 return c[rt].l; 128 } 129 130 #undef lson 131 #undef rson 132 #undef RUSH 133 } st; 134 135 int N, M; 136 int oval[MaxA], val[MaxA]; ///oval:原树上结点编号到值的映射 137 ///val:树剖后生成的线性表上编号到值的映射 138 void init() { 139 edgeNum=0; 140 memset(head, -1, sizeof(head)); 141 } 142 void addEdge(int u, int v) { 143 edges[edgeNum]=Edge(v, head[u]); 144 head[u]=edgeNum++; 145 } 146 namespace LCT { 147 int fa[MaxA]; 148 int siz[MaxA]; 149 int son[MaxA]; 150 int dep[MaxA]; 151 int top[MaxA]; 152 int w[MaxA]; 153 int id; 154 155 int dfs1(int u, int d) { 156 siz[u]=1; dep[u]=d; son[u]=-1; 157 for(int i=head[u]; ~i; i=edges[i].nt) { 158 Edge& e=edges[i]; 159 if(e.v==fa[u]) continue; 160 fa[e.v]=u; 161 siz[u]+=dfs1(e.v, d+1); 162 if(son[u]==-1 || siz[son[u]]<siz[e.v]) son[u]=e.v; 163 } 164 return siz[u]; 165 } 166 167 void dfs2(int u, int tp) { 168 w[u]=++id; top[u]=tp; 169 if(~son[u]) dfs2(son[u], tp); 170 for(int i=head[u]; ~i; i=edges[i].nt) { 171 Edge& e=edges[i]; 172 if(e.v==fa[u] || e.v==son[u]) continue; 173 dfs2(e.v, e.v); 174 } 175 } 176 177 void init() { 178 int root=1; 179 id=0; 180 fa[root]=-1; 181 dfs1(root, 0); 182 dfs2(root, root); 183 for(int i=1; i<=N; i++) { 184 val[w[i]]=oval[i]; 185 } 186 st.build(N, val); 187 } 188 189 int find(int u, int v) { 190 int res=0; 191 int f1=top[u], f2=top[v]; 192 while(f1!=f2) { 193 if(dep[f1]<dep[f2]) { swap(f1, f2); swap(u, v); } 194 res+=st.query(w[f1], w[u]) 195 +(fa[f1]!=-1&&st.qcolor(w[f1])==st.qcolor(w[fa[f1]])?-1:0); 196 u=fa[f1]; f1=top[u]; 197 } 198 if(dep[u]>dep[v]) swap(u, v); 199 return res+st.query(w[u], w[v]); 200 } 201 202 void update(int u, int v, int op) { 203 int f1=top[u], f2=top[v]; 204 while(f1!=f2) { 205 if(dep[f1]<dep[f2]) { swap(f1, f2); swap(u, v); } 206 st.color(w[f1], w[u], op); 207 u=fa[f1]; f1=top[u]; 208 } 209 if(dep[u]>dep[v]) swap(u, v); 210 st.color(w[u], w[v], op); 211 } 212 } 213 int main() { 214 #ifndef ONLINE_JUDGE 215 freopen("in", "r", stdin); 216 //freopen("out", "w", stdout); 217 #endif 218 while(~scanf("%d%d", &N, &M)) { 219 for(int i=1; i<=N; i++) { 220 scanf("%d", &oval[i]); 221 } 222 init(); 223 for(int i=1; i<N; i++) { 224 int a, b; 225 scanf("%d%d", &a, &b); 226 addEdge(a, b); 227 addEdge(b, a); 228 } 229 LCT::init(); 230 while(M--) { 231 char op[2]; 232 scanf("%s", op); 233 if(op[0]==‘C‘) { 234 int a, b, c; 235 scanf("%d%d%d", &a, &b, &c); 236 LCT::update(a, b, c); 237 } else { 238 int a, b; 239 scanf("%d%d", &a, &b); 240 printf("%d\n", LCT::find(a, b)); 241 } 242 } 243 } 244 return 0; 245 }
C、POJ 2763
题意:N个点的AOE树,q次操作,你开始在S点
操作:‘0 u’:你要去u点,问你你走过路径上的所有边的边权和;
‘1 i w’:将第i条边的边权值变为w;
解:以点代边,根不代表任何边,明白每个点代表哪条边就不会有问题
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 6 using namespace std; 7 8 const int MaxA=1e5+7; 9 10 struct Edge { 11 int v, nt; 12 int w; 13 Edge(){} 14 Edge(int v, int nt, int w):v(v), nt(nt), w(w) {} 15 } edges[MaxA<<1]; 16 17 int head[MaxA], edgeNum; 18 19 struct Fenwick { 20 int n; 21 int c[MaxA]; 22 23 void init(int n) { 24 this->n=n; 25 memset(c, 0, sizeof(c[0])*(n+3)); 26 } 27 28 int lowbit(int x) { 29 return x&-x; 30 } 31 32 void update(int x, int d) { 33 while(x<=n) { 34 c[x]+=d; 35 x+=lowbit(x); 36 } 37 } 38 39 int query(int x) { 40 int res=0; 41 while(x>0) { 42 res+=c[x]; 43 x-=lowbit(x); 44 } 45 return res; 46 } 47 48 void change(int x, int d) { 49 int tmp=query(x)-query(x-1); 50 update(x, d-tmp); 51 } 52 } fw; 53 54 int N, Q, S; 55 int oval[MaxA]; 56 void init() { 57 memset(head, -1, sizeof(head)); 58 edgeNum=0; 59 } 60 void addEdge(int u, int v, int w) { 61 edges[edgeNum]=Edge(v, head[u], w); 62 head[u]=edgeNum++; 63 } 64 namespace LCT { 65 int fa[MaxA]; 66 int siz[MaxA]; 67 int son[MaxA]; 68 int dep[MaxA]; 69 int top[MaxA]; 70 int w[MaxA]; 71 int e2p[MaxA]; ///边到点的映射 72 int id; 73 74 int dfs1(int u, int d) { 75 siz[u]=1; dep[u]=d; son[u]=-1; 76 for(int i=head[u]; ~i; i=edges[i].nt) { 77 Edge& e=edges[i]; 78 if(e.v==fa[u]) continue; 79 e2p[(i>>1)+1]=e.v; ///边的编号映射到点 80 fa[e.v]=u; oval[e.v]=e.w; ///以点代边,根节点不代表任何边 81 siz[u]+=dfs1(e.v, d+1); 82 if(son[u]==-1 || siz[son[u]]<siz[e.v]) son[u]=e.v; 83 } 84 return siz[u]; 85 } 86 87 void dfs2(int u, int tp) { 88 w[u]=++id; top[u]=tp; 89 if(~son[u]) dfs2(son[u], tp); 90 for(int i=head[u]; ~i; i=edges[i].nt) { 91 Edge& e=edges[i]; 92 if(e.v==fa[u] || e.v==son[u]) continue; 93 dfs2(e.v, e.v); 94 } 95 } 96 97 void init() { 98 int root=(N+1)>>1; 99 id=0; 100 fa[root]=-1; oval[root]=0;///以点代边,根节点不代表任何边,因此权为0 101 dfs1(root, 0); 102 dfs2(root, root); 103 fw.init(N); 104 for(int i=1; i<=N; i++) { 105 fw.update(w[i], oval[i]); 106 } 107 } 108 109 int query(int u, int v) { 110 int res=0; 111 int f1=top[u], f2=top[v]; 112 while(f1!=f2) { 113 if(dep[f1]<dep[f2]) { swap(f1, f2); swap(u, v); } 114 res+=fw.query(w[u])-fw.query(w[f1]-1); 115 u=fa[f1]; f1=top[u]; 116 } 117 if(dep[u]>dep[v]) swap(u, v); 118 return res+fw.query(w[v])-fw.query(w[u]); 119 } 120 121 void update(int x, int d) { 122 fw.change(w[e2p[x]], d); 123 } 124 } 125 int main() { 126 #ifndef ONLINE_JUDGE 127 freopen("in", "r", stdin); 128 //freopen("out", "w", stdout); 129 #endif 130 while(~scanf("%d%d%d", &N, &Q, &S)) { 131 init(); 132 for(int i=1; i<N; i++) { 133 int a, b, c; 134 scanf("%d%d%d", &a, &b, &c); 135 addEdge(a, b, c); 136 addEdge(b, a, c); 137 } 138 LCT::init(); 139 while(Q--) { 140 int op; 141 scanf("%d", &op); 142 if(op==0) { 143 int x; 144 scanf("%d", &x); 145 printf("%d\n", LCT::query(S, x)); 146 S=x; 147 } else { 148 int a, b; 149 scanf("%d%d", &a, &b); 150 LCT::update(a, b); 151 } 152 } 153 } 154 return 0; 155 }
D、POJ 3237
题意:N个结点的AOE树,各种操作~
操作:‘CHANGE i v’:将第i条边的权值变为w;
‘NEGATE a b’:将把节点a到节点b路径上所有边的权值取负;
‘QUERY a b’:询问节点a到节点b路径上的最大边权值;
‘DONE’:操作结束
解:和C题差不多,只是需要修改树剖分之后的操作
1 /* 2 * Problem: 3 * Author: SHJWUDP 4 * Created Time: 2015/6/11 星期四 15:57:34 5 * File Name: 233.cpp 6 * State: 7 * Memo: 8 */ 9 #include <iostream> 10 #include <cstdio> 11 #include <cstring> 12 #include <algorithm> 13 14 using namespace std; 15 16 const int INF=0x7f7f7f7f; 17 18 const int MaxA=1e4+7; 19 20 struct Edge { 21 int v, nt; 22 int w; 23 Edge() {} 24 Edge(int v, int nt, int w):v(v), nt(nt), w(w){} 25 } edges[MaxA<<1]; 26 27 int head[MaxA], edgeNum; 28 29 struct SegmentTree { 30 int n; 31 struct Node { 32 int mx, mi; 33 int mark; 34 } c[MaxA<<2]; 35 int *val; 36 int p, v; 37 int L, R; 38 #define lson l, m, rt<<1 39 #define rson m+1, r, rt<<1|1 40 #define RUSH Node& u=c[rt]; Node& ls=c[rt<<1]; Node& rs=c[rt<<1|1]; 41 42 void pushUp(int rt) { 43 RUSH 44 u.mx=max(ls.mx, rs.mx); 45 u.mi=min(ls.mi, rs.mi); 46 } 47 48 void pushDown(int rt) { 49 RUSH 50 if(u.mark) { 51 ls.mx=-ls.mx; ls.mi=-ls.mi; swap(ls.mx, ls.mi); 52 ls.mark^=1; 53 rs.mx=-rs.mx; rs.mi=-rs.mi; swap(rs.mx, rs.mi); 54 rs.mark^=1; 55 u.mark=0; 56 } 57 } 58 59 void doBuild(int l, int r, int rt) { 60 c[rt].mark=0; 61 if(l==r) { 62 c[rt].mx=c[rt].mi=val[l]; 63 } else { 64 int m=(l+r)>>1; 65 doBuild(lson); 66 doBuild(rson); 67 pushUp(rt); 68 } 69 } 70 71 void build(int n, int *val) { 72 this->n=n; this->val=val; 73 doBuild(1, n, 1); 74 } 75 76 void doChange(int l, int r, int rt) { 77 if(l==r) { 78 c[rt].mx=c[rt].mi=v; 79 } else { 80 pushDown(rt); 81 int m=(l+r)>>1; 82 if(p<=m) doChange(lson); 83 else doChange(rson); 84 pushUp(rt); 85 } 86 } 87 88 void change(int p, int v) { 89 this->p=p; this->v=v; 90 doChange(1, n, 1); 91 } 92 93 94 void doNegate(int l, int r, int rt) { 95 if(L<=l && r<=R) { 96 c[rt].mx=-c[rt].mx; c[rt].mi=-c[rt].mi; 97 swap(c[rt].mx, c[rt].mi); 98 c[rt].mark^=1; 99 } else { 100 pushDown(rt); 101 int m=(l+r)>>1; 102 if(L<=m) doNegate(lson); 103 if(m<R) doNegate(rson); 104 pushUp(rt); 105 } 106 } 107 108 void negate(int L, int R) { 109 this->L=L; this->R=R; 110 doNegate(1, n, 1); 111 } 112 113 114 int doQuery(int l, int r, int rt) { 115 if(L<=l && r<=R) { 116 return c[rt].mx; 117 } else { 118 pushDown(rt); 119 int m=(l+r)>>1; 120 int res=-INF; 121 if(L<=m) res=max(res, doQuery(lson)); 122 if(m<R) res=max(res, doQuery(rson)); 123 return res; 124 } 125 } 126 127 int query(int L, int R) { 128 this->L=L; this->R=R; 129 return doQuery(1, n, 1); 130 } 131 #undef lson 132 #undef rson 133 #undef RUSH 134 } st; 135 136 int N; 137 int oval[MaxA], val[MaxA]; 138 void init() { 139 edgeNum=0; 140 memset(head, -1, sizeof(head)); 141 } 142 void addEdge(int u, int v, int w) { 143 edges[edgeNum]=Edge(v, head[u], w); 144 head[u]=edgeNum++; 145 } 146 namespace LCT { 147 int fa[MaxA]; 148 int siz[MaxA]; 149 int son[MaxA]; 150 int dep[MaxA]; 151 int top[MaxA]; 152 int w[MaxA]; 153 int id; 154 int e2p[MaxA]; ///边到点的映射 155 156 int dfs1(int u, int d) { 157 siz[u]=1; dep[u]=d; son[u]=-1; 158 for(int i=head[u]; ~i; i=edges[i].nt) { 159 Edge& e=edges[i]; 160 if(e.v==fa[u]) continue; 161 e2p[(i>>1)+1]=e.v; ///边到点的映射 162 fa[e.v]=u; oval[e.v]=e.w; ///以点代边 163 siz[u]+=dfs1(e.v, d+1); 164 if(son[u]==-1 || siz[son[u]]<siz[e.v]) son[u]=e.v; 165 } 166 return siz[u]; 167 } 168 169 void dfs2(int u, int tp) { 170 w[u]=++id; top[u]=tp; 171 if(~son[u]) dfs2(son[u], tp); 172 for(int i=head[u]; ~i; i=edges[i].nt) { 173 Edge& e=edges[i]; 174 if(e.v==fa[u] || e.v==son[u]) continue; 175 dfs2(e.v, e.v); 176 } 177 } 178 179 void init() { 180 int root=1; 181 id=0; oval[root]=-INF; ///以点代边,根结点不代表任何边 182 fa[root]=-1; 183 dfs1(root, 0); 184 dfs2(root, root); 185 for(int i=1; i<=N; i++) { 186 val[w[i]]=oval[i]; 187 } 188 st.build(N, val); 189 } 190 191 void change(int p, int v) { 192 st.change(w[e2p[p]], v); 193 } 194 195 int find(int u, int v, int op) { 196 int res=-INF; 197 int f1=top[u], f2=top[v]; 198 while(f1!=f2) { 199 if(dep[f1]<dep[f2]) { swap(f1, f2); swap(u, v); } 200 if(op==0) res=max(res, st.query(w[f1], w[u])); 201 else st.negate(w[f1], w[u]); 202 u=fa[f1]; f1=top[u]; 203 } 204 if(u==v) return res; 205 if(dep[u]>dep[v]) swap(u, v); 206 if(op==0) res=max(res, st.query(w[u]+1, w[v])); 207 else st.negate(w[u]+1, w[v]); 208 return res; 209 } 210 } 211 int main() { 212 #ifndef ONLINE_JUDGE 213 freopen("in", "r", stdin); 214 //freopen("out", "w", stdout); 215 #endif 216 int T; 217 scanf("%d", &T); 218 while(T--) { 219 scanf("%d", &N); 220 init(); 221 for(int i=1; i<N; i++) { 222 int a, b, c; 223 scanf("%d%d%d", &a, &b, &c); 224 addEdge(a, b, c); 225 addEdge(b, a, c); 226 } 227 228 LCT::init(); 229 char op[7]; 230 while(scanf("%s", op), op[0]!=‘D‘) { 231 int a, b; 232 scanf("%d%d", &a, &b); 233 switch(op[0]) { 234 case ‘C‘: LCT::change(a, b); 235 break; 236 case ‘N‘: LCT::find(a, b, 1); 237 break; 238 default: printf("%d\n", LCT::find(a, b, 0)); 239 } 240 } 241 } 242 return 0; 243 }
标签:
原文地址:http://www.cnblogs.com/shjwudp/p/4569286.html