标签:
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1298
求出圆心到三条线段的最短距离,然后判断是否有顶点在圆外,就把全部情况举出来。
1 #include <cstdio> 2 #include <cstring> 3 #include <cmath> 4 #include <algorithm> 5 using namespace std; 6 const double PI = acos(-1.0); 7 double torad(double deg) { return deg/180 * PI; } 8 9 struct Point 10 { 11 double x, y; 12 Point(double x=0, double y=0):x(x),y(y) { } 13 }; 14 15 typedef Point Vector; 16 17 Vector operator + (const Vector& A, const Vector& B) { return Vector(A.x+B.x, A.y+B.y); } 18 Vector operator - (const Point& A, const Point& B) { return Vector(A.x-B.x, A.y-B.y); } 19 Vector operator * (const Vector& A, double p) { return Vector(A.x*p, A.y*p); } 20 Vector operator / (const Vector& A, double p) { return Vector(A.x/p, A.y/p); } 21 22 bool operator < (const Point& a, const Point& b) //结构体运算符的重载 23 { 24 return a.x < b.x || (a.x == b.x && a.y < b.y); 25 } 26 27 const double eps = 1e-8; 28 int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } 29 30 bool operator == (const Point& a, const Point &b) 31 { 32 return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; 33 } 34 35 //基本运算: 36 double dist(const Vector& A, const Vector& B) {return sqrt(pow(A.x-B.x,2)+pow(A.y-B.y,2));} 37 double Dot(const Vector& A, const Vector& B) { return A.x*B.x + A.y*B.y; } 38 double Length(const Vector& A) { return sqrt(Dot(A, A)); } 39 double Angle(const Vector& A, const Vector& B) { return acos(Dot(A, B) / Length(A) / Length(B)); } 40 double Cross(const Vector& A, const Vector& B) { return A.x*B.y - A.y*B.x; } 41 double Area2(Point A, Point B, Point C) {return Cross(B-A, C-A);} 42 43 //向量旋转 rad是弧度 44 Vector Rotate(const Vector& A, double rad) 45 { 46 return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad)); 47 } 48 //点和直线: 49 //两直线的交点 50 Point GetLineIntersection(const Point& P, const Point& v, const Point& Q, const Point& w) 51 { 52 Vector u = P-Q; 53 double t = Cross(w, u) / Cross(v, w); 54 return P+v*t; 55 } 56 57 //点到直线的距离 58 double DistanceToLine(const Point& P, const Point& A, const Point& B) 59 { 60 Vector v1=B-A, v2=P-A; 61 return fabs(Cross(v1,v2)) / Length(v1); 62 } 63 64 //点到线段的距离 65 double DistanceToSegment(const Point& P, const Point& A, const Point& B) 66 { 67 if(A == B) return Length(P-A); 68 Vector v1 = B - A, v2 = P - A, v3 = P - B; 69 if(dcmp(Dot(v1, v2)) < 0) return Length(v2); 70 else if(dcmp(Dot(v1, v3)) > 0) return Length(v3); 71 else return fabs(Cross(v1, v2)) / Length(v1); 72 } 73 74 //点在直线上的投影 75 Point GetLineProjection(const Point &P, const Point &A,const Point &B) 76 { 77 Vector v = B - A; 78 return A+v*(Dot(v, P-A) / Dot(v, v)); 79 } 80 81 //线段相交判定 82 bool SegmentProperIntersection(const Point& a1, const Point& a2, const Point& b1, const Point& b2) 83 { 84 double c1 = Cross(a2-a1,b1-a1), c2 = Cross(a2-a1,b2-a1), 85 c3 = Cross(b2-b1,a1-b1), c4=Cross(b2-b1,a2-b1); 86 return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0; 87 } 88 89 90 //判断点在线段上(两个端点除外) 91 bool OnSegment(const Point& p, const Point& a1, const Point& a2) 92 { 93 return dcmp(Cross(a1-p, a2-p)) == 0 && dcmp(Dot(a1-p, a2-p)) < 0; 94 } 95 96 int main() 97 { 98 freopen("a.txt","r",stdin); 99 int t; 100 Vector s,p[5]; 101 double r,x; 102 scanf("%d",&t); 103 while(t--) 104 { 105 scanf("%lf%lf%lf",&s.x,&s.y,&r); 106 for(int i=0;i<3;i++) 107 scanf("%lf%lf",&p[i].x,&p[i].y); 108 int ans=0; 109 x=DistanceToSegment(s,p[0],p[1]); 110 if(x<=r) ans++; 111 x=DistanceToSegment(s,p[0],p[2]); 112 if(x<=r) ans++; 113 x=DistanceToSegment(s,p[1],p[2]); 114 if(x<=r) ans++; 115 bool flag=0; 116 for(int i=0;i<3;i++) 117 { 118 if(dist(s,p[i])>r) 119 { 120 flag=1;break; 121 } 122 } 123 // printf("%d %d\n",ans,flag); 124 if(ans>=1&&flag) puts("Yes"); 125 else puts("No"); 126 } 127 return 0; 128 }
标签:
原文地址:http://www.cnblogs.com/nowandforever/p/4593855.html