标签:
#include <stm32f10x_lib.h> #include "system.h" #include "usart.h" #include "dma.h" #include "tim.h" #include "string.h" #define LED1 PAout(4) #define LED2 PAout(5) #define LED3 PAout(6) void Gpio_Init(void); //数据源 uc32 SRC_Const_Buffer[32] = { 0x01020304,0x05060708,0x090A0B0C,0x0D0E0F10, 0x11121314,0x15161718,0x191A1B1C,0x1D1E1F20, 0x21222324,0x25262728,0x292A2B2C,0x2D2E2F30, 0x31323334,0x35363738,0x393A3B3C,0x3D3E3F40, 0x41424344,0x45464748,0x494A4B4C,0x4D4E4F50, 0x51525354,0x55565758,0x595A5B5C,0x5D5E5F60, 0x61626364,0x65666768,0x696A6B6C,0x6D6E6F70, 0x71727374,0x75767778,0x797A7B7C,0x7D7E7F80 }; //目标位置 u32 DST_Buffer[32]; int main(void) { u8 i=0; u16 StartTime=0,CPUSpendTime=0,DMASpendTime=0;; Rcc_Init(9); //系统时钟设置 Usart1_Init(72,9600); Tim_Init(TIM_2,65535,71); //初始化TIM2定时器,设定重装值和分频值,计时时间为1us/次 Dma_Init(DMA1_Channel1,(u32)SRC_Const_Buffer,(u32)DST_Buffer); //初始化DMA,外设地址示例 &USART1->DR Nvic_Init(1,0,DMA1_Channel1_IRQChannel,4); //设置抢占优先级为0,响应优先级为0,中断分组为4 Gpio_Init(); StartTime = TIM2->CNT; while(i<32) //CPU搬运 { DST_Buffer[i]=SRC_Const_Buffer[i]; i++; } CPUSpendTime = TIM2->CNT - StartTime; printf("\r\n the CPU spend : %dus! \r\n",CPUSpendTime); if(strncmp((const char *)SRC_Const_Buffer,(const char *)DST_Buffer,32) ==0) //验证传输效果,判断两数组是否相同 { printf("\r\n CPU Transmit Success! \r\n"); }else{ printf("\r\n CPU Transmit Fail! \r\n"); } i=0; while(i<32) //清空目标数组,准备DMA搬运 { DST_Buffer[i]=0; i++; } StartTime = TIM2->CNT; Dma_Enable(DMA1_Channel1,32); //DMA搬运 while( DMA1_Channel1 -> CNDTR != 0); //等待传输完成 DMASpendTime= TIM2->CNT - StartTime; printf("\r\n the DMA spend : %dus! \r\n",DMASpendTime); if(strncmp((const char *)SRC_Const_Buffer,(const char *)DST_Buffer,32) ==0) //验证传输效果,判断两数组是否相同 { printf("\r\n DMA Transmit Success! \r\n"); }else{ printf("\r\n DMA Transmit Fail! \r\n"); } while(1); } void Gpio_Init(void) { RCC->APB2ENR|=1<<2; //使能PORTA时钟 GPIOA->CRL&=0x0000FFFF; // PA0~3设置为浮空输入,PA4~7设置为推挽输出 GPIOA->CRL|=0x33334444; //USART1 串口I/O设置 GPIOA -> CRH&=0xFFFFF00F; //设置USART1 的Tx(PA.9)为第二功能推挽,50MHz;Rx(PA.10)为浮空输入 GPIOA -> CRH|=0x000008B0; }
User/stm32f10x_it.c
#include "stm32f10x_it.h" #include "system.h" #include "stdio.h" #define LED1 PAout(4) #define LED2 PAout(5) #define LED3 PAout(6) #define LED4 PAout(7) void DMAChannel1_IRQHandler(void) //和启动文件有关,STM32F10x.s中 和 STM32F10x_md.s DMA中断接口函数不同 { if( DMA1 ->ISR & (1<<1)) //传输完成中断 { LED1 = 1; DMA1->IFCR |= 1<<1; //清除传输完成中断 } if( DMA1 ->ISR & (1<<2)) //半传输完成中断 { DMA1 ->IFCR |= 1<<2; //清除半传输完成中断 } if( DMA1 ->ISR & (1<<3)) //传输错误中断 { LED4 =1 ; DMA1 ->IFCR |= 1<<3; //清除传输错误中断 } DMA1 ->IFCR |= 1<<0; //清除此通道的中断 }
Library/src/dma.c
#include <stm32f10x_lib.h> #include "system.h" #include "dma.h" //DMA通道初始化函数 //传输方向:存储器 -> 存储器模式 ,32位数据模式,存储器增量模式 //参数说明: // DMA_CHx :选择DMA控制器通道,DMA1有1-7,DMA2有1-4 // P_Adress :外设地址 // M_Adress :存储器地址 void Dma_Init(DMA_Channel_TypeDef * DMA_CHx,u32 P_Address ,u32 M_Address) { RCC->AHBENR |= 1<<0; DMA_CHx -> CCR &= 0xFFFF0000; //复位 DMA_CHx -> CCR |= 1<<1; //允许传输完成中断 //DMA_CHx -> CCR |= 1<<2; //允许半传输中断 DMA_CHx -> CCR |= 1<<3; //允许传输错误中断 读写一个保留的地址区域,将会产生DMA传输错误 //设定数据传输方向 DMA_CHx -> CCR |= 0<<4; //设定数据传输方向 0:从外设读 1:从存储器读 DMA_CHx -> CCR |= 0<<5; //0:不执行循环操作 1:执行循环操作 //设定地址增量 DMA_CHx -> CCR |= 1<<6; //0:不执行外设地址增量操作 1:执行外设地址增量操作 DMA_CHx -> CCR |= 1<<7; //0:不执行存储器地址增量操作 1:执行存储器地址增量操作 //设定外设数据宽度 S DMA_CHx -> CCR |= 0<<8; //外设数据宽度,由[9:8]两位控制 DMA_CHx -> CCR |= 1<<9; //00:8位 01:16位 10:32位 11:保留 //设定存储数据宽度 DMA_CHx -> CCR |= 0<<10; //存储器数据宽度,由[11:10]两位控制 DMA_CHx -> CCR |= 1<<11; //00:8位 01:16位 10:32位 11:保留 //设定为中等优先级 DMA_CHx -> CCR |= 1<<12; //通道优先级,由[13:12]两位控制 DMA_CHx -> CCR |= 1<<13; //00:低 01:中 10:高 11:最高 DMA_CHx -> CCR |= 1<<14; //0:非存储器到存储器模式; 1:启动存储器到存储器模式。 //必须配置好通道后配置地址 DMA_CHx -> CPAR = (u32)P_Address; //设定外设寄存器地址 DMA_CHx -> CMAR = (u32)M_Address; //设定数据存储器地址 } //DMA通道使能 //参数说明: // DMA_CHx :选择DMA控制器通道,DMA1有1-7,DMA2有1-4 // Number :数据传输量 void Dma_Enable(DMA_Channel_TypeDef * DMA_CHx,u16 Number) { DMA_CHx -> CCR &= ~(1<<0); //关闭上一次DMA传输 DMA_CHx -> CNDTR = Number; //数据传输量 DMA_CHx -> CCR |= 1<<0; //开始DMA传输 }
Library/inc/dma.h
#include <stm32f10x_lib.h> void Dma_Init(DMA_Channel_TypeDef * DMA_CHx,u32 P_Adress ,u32 M_Address); void Dma_Enable(DMA_Channel_TypeDef * DMA_CHx,u16 Number);
#include "stm32f10x.h" #include "stdio.h" #include "string.h" #define PRINTF_ON 1 #define BufferSize 32 vu16 LeftDataCounter; vu32 Tick; uc32 SRC_Const_Buffer[BufferSize] = { 0x01020304,0x05060708,0x090A0B0C,0x0D0E0F10, 0x11121314,0x15161718,0x191A1B1C,0x1D1E1F20, 0x21222324,0x25262728,0x292A2B2C,0x2D2E2F30, 0x31323334,0x35363738,0x393A3B3C,0x3D3E3F40, 0x41424344,0x45464748,0x494A4B4C,0x4D4E4F50, 0x51525354,0x55565758,0x595A5B5C,0x5D5E5F60, 0x61626364,0x65666768,0x696A6B6C,0x6D6E6F70, 0x71727374,0x75767778,0x797A7B7C,0x7D7E7F80 }; u32 DST_Buffer[BufferSize]; u8 i=0,DMASpendTime=0,CPUSpendTime=0; void RCC_Configuration(void); void GPIO_Configuration(void); void NVIC_Configuration(void); void USART_Configuration(void); void DMA_Configuration(void); int main(void) { RCC_Configuration(); GPIO_Configuration(); NVIC_Configuration(); USART_Configuration(); DMA_Configuration(); SysTick_Config(72); Tick = 0; while(i<BufferSize) { DST_Buffer[i]=SRC_Const_Buffer[i]; CPUSpendTime = Tick; i++; } i=0; while(i<BufferSize) { DST_Buffer[i]=0; i++; } Tick = 0; DMA_Cmd(DMA1_Channel6,ENABLE); while(LeftDataCounter != 0); //等待传输完成 DMASpendTime = Tick; if(strncmp((const char *)SRC_Const_Buffer,(const char *)DST_Buffer,BufferSize) ==0) { printf("\r\n Transmit Success! \r\n"); }else{ printf("\r\n Transmit Fail! \r\n"); } printf("\r\n the CPU spend : %dus! \r\n",CPUSpendTime); printf("\r\n the DMA spend : %dus! \r\n",DMASpendTime); } void DMA_Configuration(void) { DMA_InitTypeDef DMA_InitStructure; DMA_DeInit(DMA1_Channel6); DMA_InitStructure.DMA_PeripheralBaseAddr = (u32) SRC_Const_Buffer; DMA_InitStructure.DMA_MemoryBaseAddr = (u32) DST_Buffer; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; DMA_InitStructure.DMA_BufferSize = BufferSize; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Enable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word; DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_M2M = DMA_M2M_Enable; DMA_Init(DMA1_Channel6,&DMA_InitStructure); DMA_ITConfig(DMA1_Channel6,DMA_IT_TC,ENABLE); } void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA , &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA , &GPIO_InitStructure); } void RCC_Configuration(void) { /* 定义枚举类型变量 HSEStartUpStatus */ ErrorStatus HSEStartUpStatus; /* 复位系统时钟设置*/ RCC_DeInit(); /* 开启HSE*/ RCC_HSEConfig(RCC_HSE_ON); /* 等待HSE起振并稳定*/ HSEStartUpStatus = RCC_WaitForHSEStartUp(); /* 判断HSE起是否振成功,是则进入if()内部 */ if(HSEStartUpStatus == SUCCESS) { /* 选择HCLK(AHB)时钟源为SYSCLK 1分频 */ RCC_HCLKConfig(RCC_SYSCLK_Div1); /* 选择PCLK2时钟源为 HCLK(AHB) 1分频 */ RCC_PCLK2Config(RCC_HCLK_Div1); /* 选择PCLK1时钟源为 HCLK(AHB) 2分频 */ RCC_PCLK1Config(RCC_HCLK_Div2); /* 设置FLASH延时周期数为2 */ FLASH_SetLatency(FLASH_Latency_2); /* 使能FLASH预取缓存 */ FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); /* 选择锁相环(PLL)时钟源为HSE 1分频,倍频数为9,则PLL输出频率为 8MHz * 9 = 72MHz */ RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); /* 使能PLL */ RCC_PLLCmd(ENABLE); /* 等待PLL输出稳定 */ while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); /* 选择SYSCLK时钟源为PLL */ RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); /* 等待PLL成为SYSCLK时钟源 */ while(RCC_GetSYSCLKSource() != 0x08); } /* 打开APB2总线上的GPIOA时钟*/ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_USART1, ENABLE); RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); //RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR|RCC_APB1Periph_BKP|RCC_APB1Periph_WWDG, ENABLE); } void USART_Configuration(void) { USART_InitTypeDef USART_InitStructure; USART_ClockInitTypeDef USART_ClockInitStructure; USART_ClockInitStructure.USART_Clock = USART_Clock_Disable; USART_ClockInitStructure.USART_CPOL = USART_CPOL_Low; USART_ClockInitStructure.USART_CPHA = USART_CPHA_2Edge; USART_ClockInitStructure.USART_LastBit = USART_LastBit_Disable; USART_ClockInit(USART1 , &USART_ClockInitStructure); USART_InitStructure.USART_BaudRate = 9600; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx|USART_Mode_Tx; USART_Init(USART1,&USART_InitStructure); USART_Cmd(USART1,ENABLE); } void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0); NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel6_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } #if PRINTF_ON int fputc(int ch,FILE *f) { USART_SendData(USART1,(u8) ch); while(USART_GetFlagStatus(USART1,USART_FLAG_TC) == RESET); return ch; } #endif
stm32f10x_it.c
#include "stm32f10x_it.h" #include "stdio.h" extern vu32 Tick; extern vu16 LeftDataCounter; void SysTick_Handler(void) { Tick++; } void DMA1_Channel6_IRQHandler(void) { LeftDataCounter = DMA_GetCurrDataCounter(DMA1_Channel6); //获取剩余待传输数据 DMA_ClearITPendingBit(DMA1_IT_GL6); }
标签:
原文地址:http://www.cnblogs.com/LittleTiger/p/4596163.html