题意:给定一个n个点的连通的无向图,一个点的“鸽子值”定义为将它从图中删去后连通块的个数。求每个点的“鸽子值”。
思路dfs检查每个点是否为割顶,并标记除去该点后有多少个连通分量
#include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<iostream> #include<algorithm> #include<vector> #include<map> #include<queue> #include<stack> #include<string> #include<map> #include<set> #define eps 1e-6 #define LL long long using namespace std; const int maxn = 10000 + 100; const int INF = 0x3f3f3f3f; int n, m; vector<int> G[maxn]; int val[maxn], node[maxn]; //node数组记录结点id间接排序 bool cmp(int x, int y) { return val[x] == val[y] ? x < y : val[x] > val[y]; } int pre[maxn], dfs_clock; int dfs(int u, int fa) { //u在dfs树中的父节点为fa int lowu = pre[u] = ++dfs_clock; int child = 0; //子节点个数 for(int i = 0; i < G[u].size(); i++) { int v = G[u][i]; if(!pre[v]) { //没有访问过v child++; int lowv = dfs(v, u); lowu = min(lowu, lowv); //用后代的low函数更新u的low函数 if(lowv >= pre[u]) { val[u]++; } } else if(pre[v] < pre[u] && v != fa) lowu = min(lowu, pre[v]); //用反向边更新u的low函数 } if(fa < 0 && child == 1) val[u] = 1; return lowu; } void init() { dfs_clock = 0; memset(pre, 0, sizeof(pre)); for(int i = 0; i < n; i++) { G[i].clear(); node[i] = i; val[i] = 1; } int x, y; while(scanf("%d%d", &x, &y) == 2 && x >= 0) { G[x].push_back(y); G[y].push_back(x); } } void solve() { dfs(0, -1); sort(node, node+n, cmp); for(int i = 0; i < m; i++) cout << node[i] << " " << val[node[i]] << endl; cout << endl; } int main() { //freopen("input.txt", "r", stdin); while(scanf("%d%d", &n, &m) == 2 && n) { init(); solve(); } return 0; }
原文地址:http://blog.csdn.net/u014664226/article/details/46622001