标签:
之前已经参加过几次QCon峰会,不过今年QCon 2014 上海峰会对我来说比较特别,不再只是一名听众,而是第一次登台演讲。感觉的确不太一样,一来是身份从听众变成了讲师,二来是因为成了讲师,让我接触到更多的业内朋友,也遇到了更多的提问、咨询。会后已经有一段时间了,还有朋友提出想了解更多的技术知识。看来会上行云流水的半个小时,未能把一个技术点讲述明白,我想还是总结一下,让技术圈朋友们对Bitmap这个技术点加深点理解。
每个技术点背后都有一系列业务的故事,透过我这次讲的Bitmap,我们可以看到历史上始终困扰营销领域的一个核心问题。著名广告大师约翰?沃纳梅克提出:我知道我的广告费有一半浪费了,但遗憾的是,我不知道是哪一半被浪费了 (翰?沃纳梅克,始创第一家百货商店“沃纳梅克氏”,被认为是百货商店之父;同时也是第一个投放现代广告的商人)。为什么会出现这样的浪费呢?我个人觉得还是对营销所面向的人群理解不透彻导致的。因此,营销领域一直期待技术系统能够提供一种能力,可以高速、灵活的、从海量用户中,找出最合适的那一部分。
需求的背后,是技术的不断进步。最近几年,信息技术的突飞猛进,给解决问题带来了一线曙光。大数据处理技术和系统,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。使用各种各样新型的技术武器(Hadoop、Spark、Storm等等开源工具),我们近乎完美的捕捉到这个时代的浪潮:将人群的属性分析、行为分析、甚至是心理分析深入到相当精深的地步。
业务需求对技术的要求是永无止境的。我们需要更好的工具:
我们最初非常仰仗Hadoop,不过后来发现Hadoop不是银弹,核心的问题不是Hadoop出了错,而是我们对Hadoop的本质理解稍显片面。Hadoop是一种高吞吐量系统,其设计和实现中采用了小操作合并,基于操作日志的更新等提高吞吐量的技术。硬币的两面在使用过程中逐步显现:高吞吐量和低延迟是两个矛盾的目标。既然要低延迟,上Storm,上Redis。在2011年,我们在Hadoop的批处理的基础上,为我们的统计平台增加了实时计算能力。下面这张图,大约反映了一种典型的架构系统:如何使用两种流派的计算系统解决计算问题。
看似完美的解决了高吞吐量和低延迟的矛盾,但是,核心业务问题没有得到解决:业务人员需要在海量数据中,使用多维交叉的方式,不断计算手里的数据。批量处理还是需要几个小时,甚至一天才能出一批数据。流式处理只能算当前的数据,历史数据无法回朔。
看待硬币的两面是一种视角,这也许是一种平庸的视角。如果不看硬币,把硬币当做金属,寻找、发现、创造一种新的铸造硬币的方法,又是另外一种视角。2012年,我们跳出了传统的视角(例如Hadoop、或者Storm的改造),重新观察我们的问题。经过分析,我们得到一个结论:我们需要做的,是创造第三种计算方式,而不是继续在两种计算方式中挖潜。
如果我们把传统系统看作白天鹅,并把高速的、灵活的多维交叉分析当作飞行的目标,我们应该看看白天鹅为什么飞得累,飞得慢?
第一个技术障碍是高I/O开销,包括磁盘I/O和网络I/O两种主要开销。传统的数据存储都是以行的方式存储在磁盘文件中,而传统的文件系统又都是为大文件连续读写做优化的。假如我们要做多维交叉分析,我们分析一下系统的运作过程:
第二个技术障碍是计算相对低效。传统计算中,把大量的CPU和内存放到了数据装载,数据过滤等等(上面的浪费就是例子)。
新一代的计算体系的设计重点是降低整体IO,并尽量让计算资源用在真正有价值的点上。
我们用了三种法宝克服上面的缺陷,以提高整体计算效率:
那么到底是哪只黑天鹅将以上的优点集于一身内?它就是Bitmap。
Bit即比特,是目前计算机系统里边数据的最小单位,8个bit即为一个Byte。一个bit的值,或者是0,或者是1;也就是说一个bit能存储的最多信息是2。
Bitmap可以理解为通过一个bit数组来存储特定数据的一种数据结构;由于bit是数据的最小单位,所以这种数据结构往往是非常节省存储空间。比如一个公司有8个员工,现在需要记录公司的考勤记录,传统的方案是记录下每天正常考勤的员工的ID列表,比如2012-01-01:[1,2,3,4,5,6,7,8]。假如员工ID采用byte数据类型,则保存每天的考勤记录需要N个byte,其中N是当天考勤的总人数。另一种方案则是构造一个8bit(01110011)的数组,将这8个员工跟员工号分别映射到这8个位置,如果当天正常考勤了,则将对应的这个位置置为1,否则置为0;这样可以每天采用恒定的1个byte即可保存当天的考勤记录。
综上所述,Bitmap节省大量的存储空间,因此可以被一次性加载到内存中。再看其结构的另一个更重要的特点,它也显现出巨大威力:就是很方便通过位的运算(AND/OR/XOR/NOT),高效的对多个Bitmap数据进行处理,这点很重要,它直接的支持了多维交叉计算能力。比如上边的考勤的例子里,如果想知道哪个员工最近两天都没来,只要将昨天的Bitmap和今天的Bitmap做一个按位的“OR”计算,然后检查那些位置是0,就可以得到最近两天都没来的员工的数据了,比如:
再比如,我们想知道哪些男员工没来?我们可以在此结果上再“And”上一个Bitmap就能得到结果。
回忆一下前面,浪费的有两个部分:其一是存储空间的浪费,Bitmap比文件强多了,但是仍然有浪费的嫌疑。它需要保存到外部存储(数据库或者文件),计算时需要从外部存储加载到内存,因此存储的Bitmap越大,需要的外部存储空间就越大;并且计算时I/O的消耗会更大,加载Bitmap的时间也越长。其二是计算资源的浪费,计算时要加载到内存,越大的Bitmap消耗的内存越多;位数越多,计算时消耗的cpu时间也越多。
对于第一种浪费,最直觉的方案就是可以引入一些文件压缩技术,比如gzip/lzo之类的,对存储的Bitmap文件进行压缩,在加载Bitmap的时候再进行解压,这样可以很好的解决存储空间的浪费,以及加载时I/O的消耗;代价则是压缩/解压缩都需要消耗更多的CPU/内存资源;并且文件压缩技术对第二种浪费也无能为力。因此只有系统有足够多空闲的CPU资源而I/O成为瓶颈的情况下,可以考虑引入文件压缩技术。
那么有没有一些技术可以同时解决这两种浪费呢?好消息是有,那就是Bitmap压缩技术;而常见的压缩技术都是基于RLE(Run Length Encoding,详见http://en.wikipedia.org/wiki/Run-length_encoding)。
RLE编码很简单,比较适合有很多连续字符的数据,比如以下边的Bitmap为例:
可以编码为0,8,2,11,1,2,3,11
其意思是:第一位为0,连续有8个,接下来是2个1,11个0,1个1,2个0,3个1,最后是11个0(当然此处只是对RLE的基本原理解释,实际应用中的编码并不完全是这样的)。
可以预见,对于一个很大的Bitmap,如果里边的数据分布很稀疏(说明有很多大片连续的0),采用RLE编码后,占用的空间会比原始的Bitmap小很多。
同时引入一些对齐的技术,可以让采用RLE编码的Bitmap不需要进行解压缩,就可以直接进行AND/OR/XOR等各类计算;因此采用这类压缩技术的Bitmap,加载到内存后还是以压缩的方式存在,从而可以保证计算时候的低内存消耗;而采用word(计算机的字长,64位系统就是64bit)对齐等技术又保证了对CPU资源的高效利用。因此采用这类压缩技术的Bitmap,保持了Bitmap数据结构最重要的一个特性,就是高效的针对每个bit的逻辑运算。
常见的压缩技术包括BBC(有专利保护),
WAH(http://code.google.com/p/compressedbitset/)
和EWAH(http://code.google.com/p/javaewah/)。在Apache Hive里边使用了EWAH。
我们用一个TalkingData Analytics中用户留存的例子来看Bitmap如何做到用户回访的统计。比如想知道某个应用,昨天新增的用户中,有多少人今天又开启了应用(次日留存)。使用过Hive的工程师,不难理解下面语句的含义:
同时,我们使用Bitmap技术后,同样实现上述的计算,对比测试显示出效率的差异是巨大的:
d) 引入Bitmap技术后,分析系统可能的处理流程大体是什么样的?
TalkingData提供给客户大数据下高速的多维交叉计算能力,还只是一个开始。在大数据时代,技术的发展必将推动业务的进化。TalkingData的未来在于提供客户更快速、更便捷、更灵活的数据服务。黑天鹅也遇到了更多的问题,需要逐一解决。
比如即便用了优化的压缩技术,Bitmap从文件中迁移到内存中的速度相对来说还是短板。例如系统构建初期,我们曾经把Bitmap存储在Mysql中,感觉还不错,不过随着数据量的增加,随机读的问题越来越严重:大约一次查询中,90%的时间全部被Mysql占去(某些开销是挺浪费的,例如Mysql一次SQL的执行计划,怎么都需要1ms左右)。下一步,我们计划采用“内存映射文件”技术来解决这个问题。
内存映射文件与虚拟内存有些类似,通过内存映射文件可以保留一个地址空间的区域,同时将物理存储器提交给此区域,只是内存文件映射的物理存储器来自一个已经存在于磁盘上的文件,而非系统的页文件,而且在对该文件进行操作之前必须首先对文件进行映射,就如同将整个文件从磁盘加载到内存。
由此可以看出,使用内存映射文件处理存储于磁盘上的文件时,将不必再对文件执行I/O操作,这意味着在对文件进行处理时将不必再为文件申请并分配缓存,所有的文件缓存操作均由系统直接管理,由于取消了将文件数据加载到内存、数据从内存到文件的回写以及释放内存块等步骤,使得内存映射文件在处理大数据量的文件时能起到相当重要的作用。
可以预见到的第二个Bitmap计算的难题是:我们有可能遇到“需要非常巨大的计算能力才能解决的问题”。举个简单的例子,假如一个客户想看几年的数据指标,那么有可能需要提取出成千上万个,甚至几十万个Bitmap,放到内存中进行计算,这是相当恐怖的要求。
TalkingData第一代Bitmap计算引擎,虽然利用了诸如“Fork-join”技术最大程度的利用CPU/内存,但是遇到上面的计算要求,肯定还是力不从心。第二代Bitmap计算引擎,采用分布式计算:把一个需要非常巨大的计算能力才能解决的问题分成许多小的部分,然后把这些部分分配给许多计算机进行处理,最后把这些计算结果综合起来得到最终的结果。
请大家注意一下Bitmap天生的特性,其实一个Bitmap代表了一个集合,同时它支持的计算中,就是集合计算中的“And/OR/Not”。大家可以在这个wiki上复习一下“集合代数”的知识。
http://zh.wikipedia.org/wiki/%E9%9B%86%E5%90%88%E4%BB%A3%E6%95%B0
这里面有一些给分布式Bitmap计算提供了理论基础,下面这张图表达的是分配律:
假如我们有三个集合,分别是A(去过美国的游客),B(去过中国的游客),C(使用IOS设备的游客)。现在业务人员要求找出,既去过美国,又去过中国,同时又使用IOS设备的游客。最直接的计算是:(A∩B)∪C,但是假如我们在分布式系统的视角下,我们可以分拆后的计算是:(A∪C)∩(B∪C),可以在两台计算节点上分别计算,再汇总到中心节点获得最后结果。基于这些集合代数计算的原理,我们可以把复杂的多维交叉分析,分解成很多小单元计算,分配到不同的服务器上计算,再做汇总计算得到结果。
原理简单,但是执行起来还是有很多困难的,比如数据倾斜、分拆计算优化、在高并发下解决负载均衡……
任重道远!
当我最近阅读30年前的Paper的时候,我发现科学领域的宽广和深度。大约在30年前,天体物理学家利用基数计算(Bitmap就是一种基数计算)来解释恒星数据,除此以外,还有时间序列分析和频谱分析。我们今天研究某个产品在时间上的规律,还有一个人群使用产品的频率特征,不就是这些计算科学在商业世界的再实践吗?
从历史观的角度来看,这些计算科学很早就已经存在,而现代多数程序员由于需要学习各种各样的IDE、语言,忽视了这些基础算法的学习和实践,要持续、有效地发展个人和团队,后者恰恰更重要。Bitmap技术不但让我们支持了业务的发展,也证明了我们走在一条正确的路上:透过现象看本质,从基础的算法出发,吸收各种技术流派的思想,创造属于自己的技术,反馈和服务于技术社区。这就是TalkingData的技术底蕴。
标签:
原文地址:http://my.oschina.net/muou/blog/470815