标签:bfs
题意,一个无向图,求该无向图中不小于3节点的最小奇数环。
思路bfs,但因为要求环上点的数目为奇数,所以不能简单的用一个vis数组记录点是否已访问过,可以改成二维的,
vis[u][0]表示点在偶数环中出现过,vis[u][1]表示点在奇数环中出现过
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#define eps 1e-6
#define LL long long
using namespace std;
const int maxn = 1000 + 10;
const int INF = 0x3f3f3f3f;
int n, m, kase;
int vis[maxn][2], dis[maxn];
vector<int> G[maxn];
void init() {
for(int i = 1; i <= n; i++) G[i].clear();
cin >> n >> m;
int u, v;
for(int i = 0; i < m; i++) {
cin >> u >> v;
G[u].push_back(v);
G[v].push_back(u);
}
}
int bfs(int u) {
memset(vis, 0, sizeof(vis));
queue<int> q; q.push(u); dis[u] = 1; vis[u][1] = 1;
while(!q.empty()) {
int v = q.front(); q.pop();
for(int i = G[v].size() - 1; i >= 0; i--) {
int tmp = G[v][i];
dis[tmp] = dis[v] + 1;
if(tmp == u && dis[v] >= 3 && dis[v]%2 == 1) return dis[v];
if(vis[tmp][dis[tmp]%2]) continue;
vis[tmp][dis[tmp]%2] = 1;
q.push(G[v][i]);
}
}
return INF;
}
void solve() {
int ans = INF;
for(int i = 1; i <= n; i++) ans = min(ans, bfs(i));
if(ans != INF) printf("Case %d: JYY has to use %d balls.\n", ++kase, ans);
else printf("Case %d: Poor JYY.\n", ++kase);
}
int main() {
//freopen("input.txt", "r", stdin);
int t; cin >> t;
while(t--) {
init();
solve();
}
return 0;
}
hdu 1689 Alien’s Necklace(bfs搜索最小奇数环)
标签:bfs
原文地址:http://blog.csdn.net/u014664226/article/details/46641327