码迷,mamicode.com
首页 > 其他好文 > 详细

acdream 1412 2-3Trees (组合+DP)

时间:2015-06-28 20:08:02      阅读:109      评论:0      收藏:0      [点我收藏+]

标签:

 

题意:2-3树的每个结点(除了叶子外)有2或3个孩子(分支),假设是一个满2-3树,那么给出叶子的数量,求这样的树有多少棵。(注:有2个孩子的结点视为相同,有3个孩子的结点视为相同,比如倒数第2层有4个结点,且叶子有4+6=10个,即2个有2孩的结点在前面,2个有3孩的结点在后面,那么头两个结点的孩子互换是视为相同的,如下图)

 

技术分享

 

只要结点1234各自的孩子数不变,则视为同棵树。若具有2孩的结点跟具有3孩的结点换位置,则为不同树,比如1和3换个位置。)

 

 

思路:

(1)考虑DP,依靠叶子数量小的,推出叶子数量大的。dp[k]表示叶子数为k的树有多少棵。那么只有一个结点的情况dp[1]=1我们是知道的。

(2)如何dp?

  dp[k]可以更新后面的点有dp[2k~3k],将k看成倒数第2层,那么其每个结点可以决定最底层的叶子个数。比如第1个结点生2孩,其他结点生3孩,可以更新dp[1*2+(k-1)*3]。

  这一步只需要枚举2的个数即可,2的个数可以从0→k。设k=a+b,a个生2孩,b个生3孩,那么q=a*2+b*3为我们可以更新的点,则dp[q]+=dp[k]*c[k][a],这里c[k][a]的意思是组合数学中Ck取a的组合数。任何一个dp[x]都可能被多个不同的2-3树发展多一层而变来的,例如dp[3]可以更新dp[9],dp[4]当3个结点生2孩,1个结点生3孩也可以更新到dp[9],。

(3)需要预先求得c[x][y]的所有可能,因为后面可能多次引用,逐个计算复杂度会过高。

 

技术分享
 1 #include <bits/stdc++.h>
 2 #define LL long long
 3 using namespace std;
 4 const int N=5005;
 5 LL dp[N*3];
 6 LL c[N/2][N/2];
 7 
 8 unsigned int n,r;
 9 void pre()   //组合数,类似于一个黑色的袋子中摸出黑球和白球,黑白球代表2或3孩子,组成有序序列
10 {
11     memset(c,0,sizeof(c));
12     c[0][0]=1;
13     c[1][0]=c[1][1]=1;
14     for(int i=2;i<=n/2;i++)
15     {
16         c[i][0]=1;
17         for(int j=1;j<i;j++)
18             c[i][j]=(c[i-1][j-1]%r+c[i-1][j]%r)%r;
19 
20         c[i][i]=1;
21     }
22 }
23 void init()
24 {
25     memset(dp,0,sizeof(dp));
26     dp[1]=1;
27     for(int i=1; i<n/2+1; i++)   //从前面开始更新到后面,2500还能更新5000的,所以要循环到n/2
28     {
29         for(int j=0; j<=i; j++) //有j个2,  i-j个3
30         {
31             int q=j*2+(i-j)*3; //要更新的点
32             dp[q]=(dp[q]+(dp[i]*c[i][j]))%r;
33         }
34     }
35 }
36 
37 int main()
38 {
39     //freopen("e://input.txt", "r", stdin);
40     while(~scanf("%d%d",&n,&r))
41     {
42         pre();
43         init();
44         printf("%lld\n",dp[n]);
45     }
46     return 0;
47 }
AC代码

 

acdream 1412 2-3Trees (组合+DP)

标签:

原文地址:http://www.cnblogs.com/xcw0754/p/4606011.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!