标签:
以下只是对此问题的一个代码实现,具体理论部分请参见王晓东《算法设计与分析》第2版3.1节 矩阵连乘问题。
#include <iostream> #include <iomanip> using namespace std; #define MAX_COUNT 20 //矩阵属性 struct tagMatrixAttribute { int row; int col; }; //矩阵连乘加括号求解 void MatrixChain( tagMatrixAttribute mMatrix[], int nCount, int m[][MAX_COUNT], int s[][MAX_COUNT] ) { for ( int i = 0; i < nCount; ++i ) m[i][i] = 0; for ( int r = 1; r < nCount; ++r ) { for ( int i = 0; i < nCount - r; ++i ) { int j = i + r; //从k处断开,i <= k < j int k = i; m[i][j] = m[i][k] + m[k+1][j] + mMatrix[i].row * mMatrix[k].col * mMatrix[j].col; s[i][j] = k; int nTemp = 0; for( k = i + 1; k < j; ++k ) { nTemp = m[i][k] + m[k+1][j] + mMatrix[i].row * mMatrix[k].col * mMatrix[j].col; if ( nTemp < m[i][j] ) { m[i][j] = nTemp; s[i][j] = k; } } } } } //构造结果 void TraceBack( int s[][MAX_COUNT], int i, int j ) { if ( i == j ) { cout << "A" << i+1; return; } cout << "("; TraceBack( s, i, s[i][j] ); TraceBack( s, s[i][j]+1, j ); cout << ")"; } void PrintArray( int nArray[][MAX_COUNT], int nCount ) { cout << left; for( int i = 0; i < nCount; ++i ) { for ( int j = 0; j < nCount; ++j ) { cout << setw(7) << nArray[i][j] << " "; } cout << endl; } cout << right; } int main() { tagMatrixAttribute mMatrixAttrArray[] = { 30, 35, 35, 15, 15, 5, 5, 10, 10, 20, 20, 25 }; // tagMatrixAttribute mMatrixAttrArray[] = { // 10, 100, // 100, 5, // 5, 50 // }; int nCount = _countof( mMatrixAttrArray ); int m[MAX_COUNT][MAX_COUNT]; int s[MAX_COUNT][MAX_COUNT]; memset( m, 0, sizeof(m) ); memset( s, 0, sizeof(s) ); MatrixChain( mMatrixAttrArray, nCount, m, s ); PrintArray( m, nCount ); cout << endl; PrintArray( s, nCount ); cout << endl; //构造结果 TraceBack( s, 0, nCount-1 ); cout << endl; return 0; }
作者:山丘儿
转载请标明出处,谢谢。原文地址:http://blog.csdn.net/s634772208/article/details/46683087
标签:
原文地址:http://blog.csdn.net/s634772208/article/details/46683087